
FRM: An Intelligent Assistant for Financial Resource Management1

. Andrew Gelman, Susan Altman1 Matt Pallakoff, Ketan Doshi,
Catberine ManagokTbomas C. RIndfleiscb and Bruce G. Bucbanan

nowledge Systems Laboratory
Stanford University

Abstract
FRM is an experimental, knowledge-based
system that assists in the judgmental aspects
of budget planning and financial resource
management Problem solving in this
domain requires many kinds of knowledge
from many sources. We represent domain
knowledge uniformly as constraints and
view resource management and planning
problems as constraint satisfaction and
resolution tasks. We sketch here the finan
cial resources management problem, our ap
proach, and early results, concentrating on
constraint representation and management
issues in the system.

1 Introduction
Preparing and managing budgets are knowledge
based activities that require substantial expertise
to do well. These are constraint satisfaction ·
tasks, in the abstract, where the constraints are
symbolic as well as numeric, and are judgmental
as well as definitional. They are large tasks in
which the organization of knowledge is critical to
their success.

The FRM system 2 is a prototype working
program that attempts to integrate many of the
tasks an intelligent financial assistant should per-.:
form beyond the bookkeeping that a spreadsheet
program does with numerical relations. It is an
object-oriented system in which hierarchical or
ganization among constraints, as well as among
budget items and budgets themselves, is an im
portant design principle. We use the same
mechanisms to represent a hierarchy of perspec-

Lrhis work was funded in part by: DARPA under contract
NOOO39-86-C-0033; Boeing Computer Services under contract
W26687S; a gift from Price Waterhouse Technology Centre·
Lockheed Missiles and Space Company under gift 1-72-L031:
NASA under cooperative agreement NCC2-274; and NTH un':
der grant RR-0078S.

2FRM runs on Xerox 1186 machines and is implemented in
the CLASSIHYPERCLASS object-oriented programming sys
tem [SmithR 86, Schoen 83]. CLASS and HYPERCLASS are '
trademarks of Schlumberger Technology Corporation and were
formerly known as STROBE and IMPULSE respectively.

tives under which to view the same financial in
formation in different ways. Because of the na
ture of budgeting tasks, it is important also to
represent temporal segments of budgets implicitly
as sub-budgets and reason with them just as ar
bitrary collections of line items can be considered
as sub-budgets. A uniform interface is provided
by a form-filling system that is itself driven by
constraints on how to present information under
a perspective.

While constraints, perspectives, and hierarchies
are the central themes of our work to date. we
also include in FRM. and briefly report on. a
replanning system that adjusts finished budgets in
light of new information and an explanation sys
tem that presents audit trails or explanations un
der specified perspectives. FRM also includes a
distributed database utility in its design. but not
in its current implementation. Figure 1 shows
the major components of the FRM system that
are described in subsequent sections.

USER

FORMAN

QORMD~

CONFRM

C BUDGETS DB ::>

CONSTRAINT
MANAGER

0~
PLANNER

Figure 1: The major components
of the FRM system.

2 Methods
2.1 User Interface: FORMAN

Form filling is a natural metaphor for the
budgeting assistant, and a job that most managers
will gladly turn over to an assistant FORMAN
is the FRM interface through which users create.

Change Valuo
Un •• lectAIl
Say. Data

Oelet. ~o""
Edit

Select Item·. Section
"'ddLlno

Why?

Edit Layout
... ddColl
Add Text
Add Lin ..
Edit Item

Moyoltem(l)
Lin. Up Column

LlnoUpAow

Group ltem(o)

~~I:~a~~~)

DETAILED eUDGET FOR FIRST 12 ~ONTH eUDGET PERIOD

DIRECT COSTS ONLY

PERSONNEL (Applic.nt or;anization only)

NUE POSITION TITLE

&1'tt. •• n, R. Princip.l Inve.t i;.tor
Ralston, A. P ... oor •••• ,..
Chandl, ... , Q. Secr.t.,.y

---- ----

EQUIPMENT

DESCR I PTI ON YEARL Y AMOUNT
COlpuur Equipoent • 185

SCientific-Tech Equip-NS • 3481."

Change Valu.
WHY IS

TUE/EFFORT

" Hours p.r Wk .

!7. 1
75110 ,.
187. 4

---- ----
sue TOTALS ->

FROM

7-MU-88

THROUGH

8-MAR-SS

DOLLAR AMOUNT REQUESTED (O.it centa)

SALARY FRINGE TOTALS
eENEFITS

• 2119.51 • 538. '5 I 2657.85

1·4K1~·m_. 8667.51 I '2917 . 51

• 2B84.41 • 529.44 I 2613.84

---- ---- ----

• S8453.91 • 7735.29 • 38189.19

sunOTALS -> I 13981."
Un •• I.ctAIl
Save Data

Oolote F 0""·
Edit

Ralston, A. : Di,.,ctCo.t •
• 26251.88

5"eet ttem', Section
Add Lin.

BECAUSE Elploye. Direct Cost. Yearly S.lary X Ley.l Of Effort. AND
Ra'iton, A. : PerclntlgeOfHoursVorked •

75"

Why'
Rilston, A. : Salary.

35811.1

OTHER EXPENSES

DESCR I PTI ON YEARL Y UOUNT

sunOTALS ->

sunOTALS -> ----
TOTAL DIRECT COSTS -) I 52889. is

Figure 2: User's view of a form during an FRM session.

examine, and modify budgets. Users select items,
with a mouse, on images of forms and invoke
operations on the items by selecting commands
from menus (see Figure 2). When a value on the
form is changed, the system may change other
values automatically or after consultation with the
user as a result of· applying domain knowledge.
We have attempted to keep interactions simple
an~ consistent by adopting menu-driven, object
onented, and what-you-see-is-what-you-get
(WYSIWYG) approaches to user interfaces.

A key design feature is the separation of data
stored in the CONFRM data managing module:
from presentation information which is the
domain of FORMAN.3 One datum may appear on
several different forms concurrently. Conversely
a single form may be used repeatedly to vie~
different budgets.

A form is defined as a collection of text, ac
tive cells, and sub-forms, all represented inter
nally as objects. Sub-forms are forms themselves
and may be displayed and edited accordingly. As

3Ciccarelli's work[Ciccarelli 84] also emphasizes separating
presentation information from data.

an example, the form in Figrire2 has a sub-form
labeled "PERSONNEL".

FORMAN has three main components: a form
editor, a form data base, and a table that links
items in the form data base to locations in the
budget data base. The form editor is built on the
HYPER CLASS object editor and is responsible
for creating and maintaining the graphic images
of forms.4 Form structures are stored and clas
sified hierarchically in the form database and can
be specialized, copied and edited to create new
form layouts. These layouts become views of
budget data when form's cells and sub-forms are
linked to locations in the CONFRM database. A
table object maintains these links. Each table
entry points both to a CONFRM location and to
all FORMAN objects that display the location's
value. The table provides a means for FORMAN
to instruct the database to change a value and for
the database to tell FORMAN when a value needs
to be redisplayed.

~ERCLASS editors are hierarchies of CLASS objects
that describe components of an editor (e.g .. a window, com
mand menus, main and sub-editors), along with message
receivers and associated functions that perform the essential
editing tasks.

Early use of the system indicates that with.
flexibly defined forms and intuitive user inter- '
actions, FORMAN provides users of FRM with a:
powerful tool for creating views and using them:
to manipulate data. Further developments would
increase FORMAN's utility. These include a
database browser for linking forms to data. and
improvements to the human interface of the copy,
and linking mechanisms.

2.2 Constraint Representation and Management .

Spreadsheets operate with numerical constraints·
on the values of cells 1n a mattix. FRM extends
the concept of constraints to include not only
relations among numerical values, but also rela
tions among names, titles, and other symbolic
values. FRM encodes in constraints its
knowledge of how to fill out or revise a form,
and how to make substantive changes to budgets
[Gelman 87]. The system recognizes that some
constraints are strong and must be satisfied with
out exception, while others reflect weak
preferences, with many judgmental considerations
in between.

The language of constraints must be expressive
enough to capture the following kinds of
knowledge:
• Definitions -- the total cost of a budget is the

sum of the costs of its sections;
• Rules cl Policies -- a Principal Investigator

must devote at least x% of hislher time to a
project;

• Promises cl Commitments -- if you support
my student this quarter, I will support yours
next quarter;

• Judgments cl Preferences -- agency A is un
likely to support more than x% time for
clerical support;

• Planning Heuristics -- try to support student
researchers full time during the summer,
giving preference to PhD candidates over MS ·
candidates;

• Rebudgeting Strategies -- when reducing a
budget's total cost, cut non-essential items be
fore essential items.
The constraint whose syntax is illustrated in

Figure 3 is a symbolic, preferential one that can
not be represented by a spreadsheet formula.
When more than two part-time secretaries
provide support in a budget, it may be desirable
to create a view that combines the clerical com
ponents into a single "super-secretary" item. This
constraint will detect such a situation and modify '
the structure of the current budget view, while.
retaining a detailed underlying representation for:
use when the extra detail is appropriate. Super- .
items are described in Section 2.3.

Still other kinds of constraints check on
relationships between parts of a budget. For ex-.
ample, experience may show that telephone or

supplies should be budgeted at a constant dollar
amount times the number of full-time-equivalent
employees. Such a constraint has a conditional
corrective action. If no telephone expenses are
yet 'budgeted, it creates a telephone budget item
with the indicated cost. If telephone costs are
present but have a value inconsistent with the
constraint, it updates the cost accordingly.

CONSTRAINT: SuperSecretary

Arguments. (SBudget $Secretary SAIISccretaries)
IF-Clause. (Type? $Secretary SECRETARy)
THEN-Clause • (Less (Length $AIISccretaries) 3)
CorrectiveActions • (CrcatcSuperltcm $Budget $AIISccretaries)
BindClause-1 • (BIND $Secretary (confrm Personnelltcms»
BindClausc-2 • (BIND $Budget (FindRoot $Secretary»
BindClause-3 • (BIND $AIISccretaries

Strength. 4
(Findltcms $Budget SECRETARy»

Priority • 300
ImposcdBy • Agency A
Source. Bittman
Author • Ralston
LastEditcd • 1/01/88

Figure 3: Syntax for a typical
symbolic constraint.

All of the FRM constraints have a common
structure. A constraint is an object, created or
edited through a specialized editor. The editor
guides the input of slot values to ensure they are
valid, and checks for consistency with pre
existing constraints [Altman 88]. A constraint
may have any number of arguments, which will
be bound to values at execution time. An in
dividual clause is an expression consisting of ar
guments, constants, and the constraint language
operators. The IF-clause corresponds to the pre
conditions of the constraint and is a logical ex
pression made up of zero or more clauses. The
THEN-clause is a conjunction of clauses that
describe a desired state. Corrective action 1 are
statements specifying database modifications to be
invoked upon detection of a violation.

Each argument has a binding clause that binds
it to either a database location, the value stored
at such a location, or to the result of a functional
expression The language allows bindings to be ex
pressed in terms of other arguments in the same
constraint. Arguments are bound dynamically
during constraint evaluation as their values are
needed. All bindings are generated from the in
itial binding of the enable argument of the con
straint. The enable argument is the one cor
responding to the datum whose changing value
triggered the constraint; it may be a different ar
gument each time the constraint is activated.

Links between budget data and the constraints
are created at · the time a constraint is loaded.
These links depend on binding the arguments to
class objects in the database, and are used to en
able the constraint when slot values are changed.
Enabled constraints are added to a task agenda
from whence they will be evaluated by the Con-

straint Manager/Scheduler. The sc~eduler d~i~es ~
which of the pending tasks has hIghest pnonty
and executes it The priority attribute of a con-,
straint gives a default measure of the urgency of'
considering the constraint , .

The evaluation process begms WIth the IF
clauses of the constraint The IF-Evaluator
checks each of these clauses to see if the pre-;
conditions are met If they are. the THEN-:
Evaluator is called to check for a violation of ~he'
desired relationship. If it is satisfied. no action
is taken. Otherwise. corrective actio!ls may, be,
undertaken to force satisfaction. POSSible actions;
include filling in or overwriti~g database, values.:
creating or deleting budget Items., calhng the:
planner (see Section 2.S). or consultmg the user·
about an unusual situation. , ,

Our constraint language supports the specIfica
tion of and reasoning about time intervals [Allen
84. Ladkin-A 86. Ladkin-B 86]. Tel!1p~ral
representation in constraints supports vlewmg
time slices of budgets which m:e eq~ivalent to
sub-budgets along the temporal dImenSIon. Con
straints use appropriate rate computations that
differentiate. for example. between Yc:uly. ~nd
monthly rates. and language operators Imph~ltly
handle variables whose values change over time.
We provide a set of operators describing primi
tive temporal relations as well as higher level
operators to manipul~te intervals. O~ extrapola
tion constraints prOVide a way to pro~ect a bu~get
. from one time interval to another usmg !he ~me
operators and methods that convert relative time
intervals to absolute ones.

Constraint hierarchies allo~ ~ers more co~trol
over the invocation of famlhes of ,constramts.
Constraints are indexed by several attrIbutes. such
as expert source or strength. The user can load
and delete groups of constraints using these or
user-defined indices and thus have the system, use
one expert's preferen~ or .anr other desl!ed
combination of constramts. Slmllarly. evalua~on
of some constraints may be deferred durmg
hypothetical sessions or in early stages of budget
preparation. ,

There may be times ~hen a manager decides ,to
violate constraints. or IS forced to compromIse
because of conflicts between constraints. FRM
currently provides a simple !Deans to manage
these situations. Each constramt has a stren~th
attribute. which indicates the importance of ~t~s
fying its relationship. It prOVIdes a quantIfIed
measure of the hardness or, s~ftness of ~e con
straint We believe neg?tia!i0n exp~rt~se [Lax
86] is relevant when consldenn, c<;>nfllctm.g con
straints that have different cntena, for Imp?r
tance. and are looking at ways of Incorporatmg
this knowledge into the FRM planner.

2.3 Perspectives and Recursive Sub-budgets

The design of CONFRM ~as guided by ~e need
for a flexible and extenSIble representation that
allows for multiple hierarchies. A budget is often
part of a larger budget in an organizational
framework, and conversely may itself represent
the merger of smaller sub-budgets, The FRM sys
tem must be able to display budget information
at an appropriate level of abstraction. Also. a
budget may be organized quite differently for
presentation to different agencies (e.g. NIH as
opposed to NSF). In order to satisfy these needs
we have implemented the concepts of recurs/Ye
sub-budgets and perspectiyes.

Several object hierarchies exist in the CON
FRM subsystem. the most central being the
taxonomic Canonical Representation Hierarchy
(CRH). CRH class objects contain definitions of
all budget object attributes. inclu~ing slots for
costs. descriptions. codes. etc. Object types be
come increasingly specialized as one moves
downward through the CRH. e.g. the object Per
sonnelltems has slots for EmployeeName and
Salary. while Equipment/tems ~as a Uniteost slot
There are. two main subtrees In the CRH. one a
hierarchy of budget items. indivisible budget ~x
pense entities. the other of sections. whIch
represent mergers of s~b-budgets. Another COJ"l
FRM hierarchy con tams /temTypes. a collection
of several hundred objects. each describing a
recognized type of budget expense. e.g .
"Telephone Costs" or ''Books and Publications."
Budget items may be made instances of these ob
jects. through which they may inherit various slot
values and constraints.

The ability to maintain multiple presentations
of a single set of data is achieved through the use
of perspectives. A perspective is a collection of
objects and constraints that define a particular
view of the full set of budget items. Each
perspective has a designated root object Th~ sib
ling perspective objects form a tree of arbitrary
depth below the root. successively refining the
budget organization into sub-budgets. The ob
jects at the leaves of the perspective tree are sets
(or sub-budgets) of actual budget items from the
canonical hierarchy (see Figure 4).

A perspect/ye constraint may be associated with
any leaf perspective object. e.g .• Domestic Trayel
in Figure 4. Such a constraint 'describes the con
ditions whereby a budget item could be a sub
budget of the perspective. and 'Y0ul~ be !oaded
automatically when the perspective IS activated.
Suppose. for example. the user preparing a budget
under the NIH perspective adds an item to the
"Supplies" section and enters "Furniture" as its
description. The perspective constraints linked to
the description field will be evaluated and the
one govemi,ng membership !n the Equi~ment ~
tion will fIre. The constramt's corrective action
removes the item from the Supplies section and
adds it to Equipment

-."'. Mim.

BUDGET

OTHER EXPENSES
CONSORTIUM/CONTRACTUAL COSTS
ALTERATIONS AND RENOVATIONS

__ OUTPATIENT
PATIENT CARE COSTS~INPATIENT

__ FOREIGN
TRAVEL _____ OOMESTIC
SUPPLIES
EQUIPMENT
CONSULTANT COSTS
PERSONNEL

Figure 4: The structure of the NIH
perspective. Each node in the graph

represents one perspective object

The sub-budgeting model extends from
perspectives to other sets of budget items. New
super-budgets can be created by combining two
or more budget item sets into a super-set Each
set involved in such a merger maintains its iden
tity and may be viewed individually as before.
Sets to be combined may represent different tasks
or sub-projects within a project or may represent
different time-slices of a single budget The
combining process is recursive in that super-sets
may themselves be merged into larger sets.

Returning to the "super-secretary" example dis
cussed in Section 2.2. a leaf node of a perspective
hierarchy may be a super-item which is the com
position of two or more related items. but which
we wish the system to treat for most purposes as
a single item. The final product is a hybrid of a
perspective object and a budget item. A super
item is a leaf node in the perspective tree to
which it belongs. but is subject to constraints on
perspectives as well as those on budget items.

Controlling how super-items are constrained
may provide the key to manipulating budgets at a
high level of abstraction. If a manager is work
ing on an abstracted budget for an entire or
ganization. the items s/he sees will generally be
super-items. Normally changes to costs in super
items pose complex planning problems in trying
to propagate corresponding changes down to the
component items. But suppose the system is in
structed to treat, for the interim. these super
items as items. They would thus be subject to'
item constraints rather than perspective . con
straints, and could be manipulated without resort-

. ing to planning processes. The necessary
downward propagation of these changes could be
deferred until such time as the manager wishes to
concentrate on lower budgetary levels. A similar
mechanism operating on the root of the perspec
tive could defer upward propagation. We are at
present developing this functionality and believe
it to be a feasible solution to potentially massive .
scoping and combinatorial explosion problems
inherent in the budgeting process [Duda 87]. .

2.4 Explanation

An explanation facility has been implemented for
FRM that describes. on request, how a location
acquired its current value. and if possible justifies
the value. If the current value was set by the
corrective action of a constraint, the explanation
contains an automatically generated description of
the constraint's clauses and the arguments used in
calculating the value. Explanations are recursive
in that the values of these supporting arguments
may in turn be questioned. In the case of a
user-entered value. the explanation tells when and
by whom the value was entered.

2.5 Planning

The FRM planner is called by the constraint .
manager to determine a sequence of actions to fix
a constraint violation. The current simple plan
ner [Chan 87] proceeds hierarchically. The
generation of the next sequence of actions is
guided by the solution produced at a higher level
and by planning heuristics. Some heuristics
determine the set of corrective actions which can
be chosen at each planning step, while others
prune and order the search space (explicit control
knowledge is defined in the form of meta-rules).
Another type is used to gauge the relative impor
tance of budget expenses. The hierarchical ap
proach and the application' of heuristics produce
a first solution which minimizes constraint viola
tions. However. there are always many possible
ways to achieve a planning goal. e.g.. to cut
$1.000 from a budget We are currently working
to better exploit the hierarchical representation of
budgets and extend the meta-rules to allow the
generation of alternative solutions.

3 Results and Conclusions
A prototype version of the FRM system integrates
all of the components we have described
-- FORMAN, CONFRM. the Constraint Manager.
PLANNER. and the explanation module. This
experimental. system demonstrates the advantages
of the approach reported. even though it runs
with one-half second to IS second delays on the
Xerox 1186 and has not been put into full opera
tional use. It duplicates and significantly exceeds
the . functionality of an earlier FORTRAN
program that we used for budgeting and that had
a knowledge of the rules for the Stanford en
vironment built in procedurally. Aside from the
obvious improvements of a graphics-based inter
face. FRM provides a declarative specification of
the basic budgeting and presentation rules so
these can be changed at will.

The most common budget preparation tools in
use today are spreadsheet packages. While these
commercial systems are more polished than our
prototype system. FRM has a number of powerful
capabilities not provided by spreadsheets. includ
ing:

• FRM can encode judgmental knowledge and :
provide suggestions. Constraints do not have
to be rigid relationships. - _

• FRM can handle symbolic as well as numeric '
constraints, as exemplified by the "super
secretary" constraint

• Constraints can produce structural changes to
the budget by causing new items to be created
or deleted as appropriate.

• Constraints can be expressed generically and
need not be specifically connected to in
dividual cells. The delayed binding
mechanisms in FRM allow constraints to be
linked and invoked automatically whenever
the triggering situation is detected in the

. budget form.
• The recursive sub-budget capability allows a

flexible partitioning or aggregation of budget
elements without specifically having to
program the relationships and combination
actions cell by cell.

• Different user preferences and institutional
requirements for budget formats and infor
mation presentation can be accommodated
through the mechanism of perspectives.

• The FRM planner can take into account
tolerances on budget values in order to jointly
satisfy constraints. Constraints can be over
ridden for specific cases and the planner can
"reverse-engineer" line item changes.

• FRM has a simple explanation facility which
allows the user to examine the chain of cal
culations or actions producing an observed
value. This facility is not a model-based ex
planation at present as in [Kosy 84], but suf
fices for relatively tightly constrained budget
ing situations.
In parallel with experimenting with the FRM

system, we reproduced some of its functionality
in a MicroSoft EXCEL spreadsheet template
using the macro facilities available. The EXCEL
spreadsheet was extremely brittle in that it was
not possible to protect users from overwriting
formulas and still give them the ability to
manipulate other items. The spreadsheet im
plementation tightly embeds the inter-element
relationships with the data presentation, resulting
in a rigid and opaque system. Trying to build in.
needed flexibility proved very frustrating because
of the limited nature of the programming lan-'
guage provided to relate cells or manipulate them'
in macros. We believe that the FRM constraint
based model provides a much more powerful and
flexible environment in which to express
budgetary relationships and to support user
interactions.

Acknowledgements
We thank Jean-Luc Bonnetain, Jean-Luc Brouil
let, Dennis Chan, Craig Cornelius, Don Henager,
and Carla Wong for their contributions to the
FRM project And we thank Reid Smith, Eric
Schoen, and the Schlumberger Palo Alto Research
center for their contribution and support of the
CLASS/HYPERCLASS object-oriented system on
which FRM is built.

References ..
[Allen 84] Allen, J.F. Towards a General Theory
of Action and Time. Artificial Intelligence
23(2):123-154, July, 1984 .
[Altman 88] Altman, S. Knowledge Aquisition
and Representation in FRM. Internal Working
Paper KSL 88-45, Stanford University, Knowledge
Systems Laboratory, June, 1988.
[Chan 87] Chan, D. PLANNER: An Intelligent
Budget Planner. Internal Working Paper KSL
87-74, Stanford University, Knowledge Systems
Laboratory, June 1987.
[Ciccarelli 84] Ciccarelli, E. Presentation Based
User Interfaces. Technical Report AI-TR-794,
MIT Artificial Intelligence Laboratory, August,
1984.
[Duda 87] Duda. R.O., Hart, P.E., Reboh, R .•
Reiter. J. and Risch. T. Syntel: Using a Func
tional Language for Financial Risk Assessment
IEEE Expert 2(3):18-31. Fall. 1987.
[Gelman 87] Gelman. A. CONFRM: Managing
Financial Resources with Constraints. Internal
Working Paper KSL 87-14. Stanford University,
Knowledge Systems.Laboratory, February, 1987.
[Kosy 84] Kosy, D.W. and Wise. B.P. Self
Explanatory Financial Planning Models. In
Proceedings of the National Conference on Ar
tificial Intelligence. pages 176-181. American
Association for Artificial Intelligence (AAAI).
August, 1984.
[Ladkin-A 86] Ladkin. P. Time Representation:
A Taxonomy of Interval Relations. In Proceed
ings of AAAI-86, pages 360-366. AAAI. 1986.
[Ladkin-B 86] Ladkin. P. Primitives and Units
for Time Specification. In Proceedings of
AAA/-86. pages 354-359. AAAI. 1986.
[Lax 86] Lax. D. and SebeniUs. J. The Manager
as Negotiator. The Free Press, 1986.
[Schoen 83] Schoen. E. and Smith. R.G. IM
PULSE. A Display-Oriented Editor for STROBE.
In Proceedings of the National Conference on
Artificial Intelligence. pages 356-358. AAAI.
August, 1983.
[SmithR 86] Smith. R.O. and Carando.
P. Structured Object Programming In STROBE.
Technical Report SYS-86-17. Schlumberger-Doll
Research. October. 1986.

-__ J~

