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Figure 3-25. Schematic diagram of the distributed computing system III Michigan State University Mass 
Spectrometry Facility. 

components in human urine and can detect and 
report abnormalities of any of these compounds. 

i. Distributed Computing Network 

The large data files encumbered by MS tech­
niques when combined with the increasing demand 
for library searches and automatic analytical 
routines have caused a constant bias toward access 
to larger, more sophisticated data processing 
equipment. In this laboratory, the solution has 
been the development of a distributed computing 
network, as shown in Fig. 3-25. The central time­
shared computer is a DEC PDP-11/40 with 88K 
of core memory, two 2.2M-word disks, one 
150M-word disk, a line printer, and a seven-track 
industry-compatible magnetic tape unit. The 
multitask program, RSX-llD version 6.2, is the 
resident executive program for the system. This 
computer also has a 1200-baud modem for a 
phone-line connection to the CDC 6500 at the 
Michigan State University Computer Center or to 
any other computer available on the ITT phone 
system. 

Data from each mass spectrometer are col­
lected, processed, and stored by a front-end com­
puter. Selected files can then be sent upstream to 
the 11/40 system for processing, library searching, 
and long-term storage on the magnetic tape. Sev­
·eral display terminals located in user laboratories 
throughout the university can call into the system 
via a serially multiplexed phone-line modem. 
These devices enable the processing and output-

ting of selected data files and provide remote 
interaction between a user and his completed 
analyses, thereby reducing the administrative 
chores of the facility concerning the data retrieval 
and dissemination of analytical results. 
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GLOSSARY TIC Total ion current­
instantaneous total ion 
current from a mass 
spectrometer source. 
"Areal" TIC is the 
time integral of the 
TIC resulting from 
the elution of a partic­
ular mixture compo­
nent. 

CLEANUP 

DENDRAL 

FRAGMENTOGRAM 

Gaussian 

GC 

GC profile 

HISLIB 

HRMS 

LRMS 

MS 

PKU 

RRI 

Computer program to 
extract representative 
spectra for eluting 
components from GC/ 
MS data. 

Set of computer pro­
grams using artificial 
intelligence tech­
niques to assist in the 
elucidation of molec­
ular structures. 

Ion current profile at 
a particular mass as a 
function of time or 
MS scan number. 

Peak profile of the 
form exp (-x 2/2s2). 

Gas chromatography. 

A collection of data 
relating to a GC/MS 
experiment, including 
the resolved spectrum 
for each elution com­
ponent, the relative 
retention indexes for 
each component, the 
relative concentration 
for each component, 
and a name for each 
component. 

Computer 
for the 

program 
historical 

quantitative compari­
son of GC/MS anal­
yses of complex mix­
tures. 

High-resolution mass 
spectrometry. 

Low-resolution mass 
spectrometry. 

Mass spectrometry. 

Phenylketonuria. 

Relative retention in­
dex-elution time for 
a mixture component 
from a gas chroma­
tograph, normalized 
relative to those for 
internal hydrocarbon 
standards. 

TIMSEK Computer program to 
detect internal hy­
drocarbon standards 
and to compute rela­
tive retention indexes 
for other elution com­
ponents in a GC/MS 
run. 

a. Introduction 

Since the pioneering instrumentation and appli­
cations work reported by many institutions in 
the first edition of this book (1), there have 
been numerous improvements in gas chroma­
tography/mass spectrometry (GC/MS) method­
ology. These include, for example, improved 
ionization techniques, selected ion monitoring, 
and GC retention indexes (2, 3). Such advances 
in the power of GC/MS systems have 
been accompanied by significant improvements in 
the quality and ease of operation of available 
GC/MS instrumentation and by the more routine 
use of these analytic techniques for the study of 
biomedical and natural product samples. Indeed, 
screening of populations of samples has been con­
templated and in some cases begun in areas such 
as metabolic studies, evaluations of environmental 
quality, and environmental impact of chem­
ical agents. Recent applications in our own 
laboratories in the Stanford University Depart­
ments of Genetics and Chemistry have included 
qualitative and quantitative investigations of uri­
nary metabolites from premature infants (4-6), 
sterols extracted from marine organisms (7-10), 
environmental samples (11, 12) and the relative 
amino acid composition of carbonaceous chon­
drites (13). Such applications, even on a small 
scale, result in prodigious amounts of data that are 
unmanageable for chemists to analyze thoroughly 
and effectively without computer assistance. Com­
puter support is needed at all levels of the proces­
sing from raw data acquisition through spectral 
interpretation and structure determination. 
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The importance of the digital computer for data 
analysis in GCjMS applications was, of course, 
foreseen long ago. However, since the efforts 
documented in the first volume of this book, sig­
nificant developments in the technology and 
economics of computer hardware and software 
have taken place (14) that have had a profound 
impact on the organization of computer support 
for laboratory instrumentation and on the effec­
tiveness of program tools available. These trends 
have provided the key impetus of our GCjMS 
system development work over the past 6 years. 
We have focused on developing an integrated and 
reliably automated set of computer programs to 
assist routine laboratory use of GCjMS. Programs 
have been written to help with several phases of 
GCjMS data processing, including: 

1. Acquisition and automatic reduction of 
low- and high-resolution mass spectral data ac­
quired in GCjMS experiments. 

2. Extraction of high-quality, low-resolution 
mass spectra of GC-eluted components free from 
background, GC column bleed, and interference 
from closely eluting neighbors. 

3. Quantitation, library identification, and 
comparison of GCjMS profiles with results of ear­
lier experiments. 

4. Interpretation of mass spectral information 
consistent with other spectrometric and structural 
constraints to elucidate unknown molecular struc­
tures (see Chapter 7). 

Each of these programs has been developed 
within a design philosophy that emphasizes reli­
able automation, use of commonly available 
laboratory computer systems where possible, and 
implementations that can be relatively easily ex­
ported to other laboratories. Our concern for "re­
liable automation" stems from two issues. First, 
raw data analysis programs should be "data adap­
tive" in that they should be able to operate 
correctly in spite of changes in instrument 
parameters, such as sensitivity, resolution, scan 
rate, and noise levels. They should be able to 
track such changes when feasible and flag for the 
operator intolerable excursions from normal oper­
ation. Second, data analysis programs inevitably 
encounter ambiguous situations where the outcome 
of the analysis will be substantially affected by 
minor changes in a signal threshold or other 
parameter setting. In using the computer to ab­
stract "significant" information from the volumin­
ous raw GCjMS source, the chemist may be lulled 
into a false sense of security and faith when using 

a well-running program. It is important that such 
programs be designed with a significant degree of 
introspective ability so that the chemist is properly 
warned when results are questionable or ambig­
uous. 

We have also recognized the need and, indeed, 
obligation to construct our analysis software in­
sofar as possible to be sharable with other 
laboratories. The high cost of software develop­
ment and the advantages of data sharability 
among different laboratories make this goal seem 
obvious. However, considerable thought and effort 
are required to develop a generally usable pro­
gram design and to minimize the temptation to use 
specialized local system features that may produce 
some increase in efficiency but that impede the 
export of complex programs. Exportability has 
been a key design element in each of the systems 
we have worked on, emphasizing the use of com­
puters of commonly available types and sizes 
where possible, "standard" languages, and designs 
accommodating a broad range of instrument con­
figurations and operating conditions. We have as­
sisted the export and installation of our programs 
in numerous other laboratories. 

The following sections give a brief overview 
of the current GCjMS hardware facilities in 
use in the Departments of Genetics and 
Chemistry at Stanford University* and a summary 
of our work on particular programs useful in the 
data acquisition and analysis phases of GC/MS 
applications. In this exposition, we give only a 
cursory description of the hardware and software 
portions of our systems that can be considered 
"standard" or similar to those operating in other 
laboratories. Rather, we concentrate on those as­
pects of our systems that we feel are unique and 
exemplify the automation principles outlined 
above. Developments of higher-level, structural 
interpretation programs are described in Chapter 
7. 

b. Cu"ent Configuration of 
Instrumentation 

Our GCjMS laboratory systems have undergone 
substantial changes in both the areas of in­
strumentation and computational facilities. We 
have continued to operate the Finnigan 1015 

* This report documents developments only in the Depart­
ments of Genetics and Chemistry. There are GC/MS systems 
also in use in other areas, such as the Departments of 
Psychiatry, Anesthesiology, and Civil Engineering, exemplify­
ing the growth in the use of these tools over the past years. 

.-- . 
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low-resolution quadrupole* and the AEI MS-9 
high-resolution magnetic instruments reported in 
the original volume of this book. In addition, we 
use a GC-coupled, Varian-MAT Model 711, high­
resolution, double-focusing system. For the 
applications work described here, the Finnigan 
quadrupole and MAT 711 high-resolution 
systems have been the primary instruments used 
and serve complementary roles for acquiring low­
and high-resolution GC/MS data. 

In typical applications, the range of analytic 
tools from stand-alone GC to GC/LRMS (low­
resolution MS) to GC/HRMS (high-resolution 
MS) is used hierarchically to study biochemical 
mixtures. This range of tools provides increasingly 
definitive insights, at the expense of difficulty and 
sensitivity, into the mixture components. Analyses 
and identifications that cannot be effected at one 
level can be studied with more powerful tech­
niques, if warranted by the problem. 

Our computation facilities are also organized 
into hierarchical systems, taking advantage of the 
ongoing advances in relatively low-cost minicom­
puters where possible. We use three separate 
stages of processing divided according to real-time 
instrument support, post data reduction and 
analysis, and more sophisticated data interpreta­
tion processes. Each machine serves a well­
defined set of functions with each stage coupled to 
the next through data communication facilities. 
Based on the technology of the early to mid-1970s 
we use Digital Equipment Corporation PDP-
11/20 machines at the real-time instrument inter­
face, PDP-11/45's for data reduction and analysis, 
and the SUMEX time-shared PDP-10 systemt for 
the more complex interpretation tools discussed in 
Chapter 7. There are separate computer systems 
for the Finnigan low-resolution and MAT 711 
high-resolution instruments, each consisting of a 
PDP-11/20 data collection and instrument control 
machine connected to a PDP-11/45 data reduc­
tion machine. This hierarchical organization pro­
vides for a useful flexibility and asynchrony be­
tween the collection of raw data and subsequent 

* The Finnigan instrument and ·data system have been relo­
cated to the Rockefeller University in New York as part of 
Professor Lederberg's recent move there from Stanford. We 
are continuing to maintain the programs at Stanford used in 
that system and to assist in their export to other laboratories. 
t SUMEX is a national computational resource funded by the 
NIH Biotechnology Resources Program to support a commun­
ity of projects applying artificial intelligence techniques to 
biomedical research. Its facilities have replaced the ACME 
system which was used for much of the GC/MS work we 
reported earlier. 

stages in the processing, the latter of which may 
benefit from chemist interactions and the use of 
other sources of information for optimum analysis. 
The advantages of shared software between the 
systems should be obvious. 

It should be emphasized that the PDP-11 
laboratory computers provide the computational 
support required for routine application of these 
GC/MS systems, including the CLEANUP and 
HISLIB programs described in Sections c and d. 
The SUMEX facility is used for analyses of un­
knowns with the DENDRAL programs (Chapter 
7), where inputs from several physical methods 
(e.g., GC/LRMS, GC/HRMS, NMR, or IR) may 
be combined with other structural constraints to 
hypothesize and evaluate alternative candidate 
structures. 

c. Resolution of Spectra in 
GC/MS Profiles (CLEANUP) 

i. INTRODUCTION 

In biomedical applications of G~/MS, it is often 
important to be able to systematically isolate and 
identify minor components in the complex mix­
tures being analyzed. Because of instrumentation 
limitations, many of the mass spectra obtained 
from GC/MS analyses of such mixtures are mar­
kedly different from the spectra of the corres­
ponding pure compounds. Differences may be 
caused by contributions from unresolved neigh­
boring components due to incomplete GC separa­
tion and also from GC septum and column bleed 
and from background of the mass spectrometer 
itself. These extraneous contributions may se­
verely distort the relative abundances of ions in 
the mass spectrum and contribute peaks that are 
not characteristic of the component being ex­
amined. Such spurious ion contributions com­
promise manual or automated (e.g., library search) 
interpretation of the data. 

A program called CLEANUP has been de­
veloped for systematically extracting representa­
tive mass spectra ("resolved" spectra) of mixture 
components from GC/LRMS data. CLEANUP 
uses peak models derived directly from the raw 
data to locate individual eluted components and to 
produce spectra with relative ion abundances 
properly assigned among overlapping components 
in the eluate. Accurate spectral amplitudes are 
obtained by correcting for background and neigh­
boring component contributions. By these data­
adaptive corrections, components that are eluted 
within less than two spectral scan times of each 
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other can be detected and their mass spectra well 
resolved. One can routinely and reliably extract 
component spectra of high quality from GC/MS 
runs that enable more definitive library matching, 
easier human interpretation of unknowns, and 
even the addition of extracted spectra to a library 
as authentic spectra. The following illustrates the 
results obtainable by these methods and briefly 
summarizes the procedures used. A more detailed 
description of the method as well as a comparison 
with methods proposed by other authors can be 
found in the literature (15-18). 

In a previous publication describing the 
CLEANUP program (15), we illustrated the abil­
ity of the program to extract, from raw data, 
spectra that compare very favorably with library 
spectra of authentic compounds. Such high-quality 
spectra can be obtained even in the presence of 
severe interferences from background and over­
lapping components. We present three additional 
examples here, selected because they illustrate the 
operation of CLEANUP for compounds relevant 
to other parts of this presentation. 

URINARY ORGANIC ACIDS 
METHYL ESTERS 

SCAN 311 
DIETHYL PHTHALATE 

RAW DATA 

CLEAN SPECTRUM 

100 

149 

200 

Figure 3-26. Result from CLEANUP for the first of 
two low-level, closely eluting (1.7 scans apart) compo­
nents in the GC/MS analysis of the methyl ester deriva­
tives of urinary organic acids from a patient suffering 
from phenylketonuria (PKU). This figure shows the raw 
(upper) and corrected (lower) spectra corresponding to 
scan 311. The extracted spectrum compares favorably 
to the authentic library spectrum of diethyl phthalate. 

SCAN 312 
UNKNOWN COMPOUND 

RAW DATA 

115 

115 

CLEAN SPECTRUM 

100 

149 

200 

Figure 3-27. Result from CLEANUP for the second 
of the two neighboring components discussed in Fig. 
3-26. The figure shows the raw (upper) and corrected 
(lower) spectra corresponding to scan 312. The ex­
tracted spectrum does not compare well with any au­
thentic spectrum in our library but has been detected at 
similar concentrations in urines from both abnormal and 
contIOI patients. 

In Figs. 3-26 and 3-27 we illustrate 
CLEANUP's analysis of two consecutive scans of 
the methyl ester derivatives of urinary organic 
acids from a patient suffering from phenyl­
ketonuria (PKU), shortly after initiation of dietary 
control (a diet low in phenylalanine). The raw data 
for scans 311 (Fig. 3-26) and 312 (Fig. 3-27) are 
presented together with the respective "clean" 
spectra. For these low-concentration, closely elut­
ing components (actual elution time difference is 
1.7 spectral scan times), we obtain interpretable 
spectra in spite of the severe background and 
neighboring component distortions. The first com­
ponent is identified tentatively as diethyl phthal­
ate, whose authentic spectrum compares favora­
bly with that illustrated in the lower half of Fig. 
3-26. Such artifacts are routinely found in extracts 
of body fluids, apparently arising from plastic ma­
terials used in the collection of samples. The sec­
ond component (Fig. 3-27) is an unknown com­
pound whose identity has not been pursued 
further because the results of the HISLIB analysis 
(see Section d) indicated that this same component 
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URINARY ORGANIC ACIDS - TMS 
SCAN 387 

UNKNOWN COMPOUND 
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Figure 3-28. Example of the result of applying CLEANUP to the trimethylsilylated urinary organic acid fraction 
obtained from the same patient as in Fig. 3-26. The top spectrum represents the raw data and the bottom spectrum is 
the corrected spectrum for an abundant component at scan 387. (The further structural analysis of this material using 
the DENDRAL programs is discussed in Chapter 7.) 

is also observed in low concentration in GC/MS 
profiles of organic acid urine fractions obtained 
from normal patients used as a comparison in this 
study. 

The third example (Fig. 3-28) illustrates a result 
obtained from running CLEANUP on a GC/MS 
analysis of the trimethylsilylated urinary organic 
acid fraction isolated from the patient mentioned 
above. Fig. 3-28 shows the raw and "clean" spectra 
for a single component present in moderate con­
centration in the urine. The primary differences 
in the spectra are the absence of low-abund­
ance background and column bleed peaks in the 
"clean" spectrum, together with slight variations 
in relative abundances of some peaks. In this 
example, the pattern of peaks important for struc­
tural analysis is clearly discernible in the raw data 
and it is important to note that CLEANUP is 
relatively transparent to spectra that are already 
of good quality. [The reSUlting spectrum did not 
match with high confidence any spectrum in our 
library of mass spectral data (19), however, and 
the DENDRAL programs were used to study the 

structure further. The spectrum of the methyl 
ester of this component provided information im­
portant to the solution of the structure, as de­
scribed in Chapter 7.J 

ii. DESCRIPTION OF METHOD 

There are two key steps in the systematic resol­
ution of GC/MS data. The first is to detect where 
in the GC profile each eluted component shows its 
maximum ion abundance and the second is to 
extract, from information in the regions about 
these maxima, representative spectra for each of 
the detected components. A basic assumption of 
our approach is that the mass spectra of two 
neighboring components can be distinguished; 
that is, there exist some masses (resolved singlets) 
for which ions occur in the mass spectrum of one 
component but not in the other, and vice versa. A 
schematic representation for two closely spaced 
materials is given in Fig. 3-29. By locating such 
"resolved" or "singlet" ion profiles at these mas­
ses (detected on the basis of the morphology of 
the mass fragmentograms), one can statistically 
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A B 

SCAN NUMBER _ 

Figure 3-29. Schematic representation of a set of par­
tial mass fragmentograms for two closely spaced eluting 
materials. Components A and B each have some ions 
with unique masses and others that are shared. 

infer the positions of the components present and 
derive tabular models of the individual ion profile 
shapes and thereby the shapes of the GC peaks 
themselves. These models (one for each eluted 
component) can be used subsequently to separate 
the unresolved ion profiles for the mass fragmen­
tograms of all other masses. The use of tabular ion 
profile models derived from the data accurately 
accommodates the a priori unknown peak shapes 
of particular components without solving for mul­
tiparameter, nonlinear model functions. Since the 
data are sampled often enough to satisfy the sam­
pling theorem (20), these tabular models contain 
the information necessary to reconstruct a con­
tinuous ion profile envelope and can therefore be 
used as if they were continuous analytical models. 
For the typical GC peak and ion profile shapes 
encountered, the collection of 5 to 10 mass 
spectra over the duration of a singlet component 
peak represents a sufficient sampling frequency. In 
addition, the mass-by-mass analysis of the profile 
complexes facilitates the mass-dependent subtrac­
tion of background. (The large variation in back­
ground levels for different masses is a function of 
both the type of GC column used and the mixture 
being analyzed.) 

(1) Determining Locations for 
Eluted Components 

The detection of eluted mixture components 
involves finding the location of each material in 
the GCjMS data, even if it does not have a 
corresponding ion current maximum in the overall 
total ion current trace. Ideally, for a given compo-

nent, the mass fragmentograms for all its ion 
masses will show maxima at the same time. In 
practice, this holds for well-resolved materials. 
However, for mixtures only partially resolved by 
the GC, peak overlap and background contribu­
tions can cause profile maxima for neighboring 
components to show significant variation in their 
apparent positions. For this reason, only singlet 
ion profiles are used for component position de­
termination. 

Candidate singlet profiles may be distinguished 
from doublet or background peaks by the feature 
that they are relatively sharp. We measure profile 
"sharpness" by averaging the magnitude of the 
profile's logarithmic derivative. By this definition, 
"sharpness" is independent of amplitude for peaks 
of identical shape. A peak with a computed sharp­
ness below a threshold appropriate to the experi­
mental conditions is considered to be either an 
artifact of the gas chromatograph (background 
peak) or a multiplet and is not included in the 
detection process. 

We compute two histograms of candidate sing­
let ion profile positions and select as component 
locations those places where both histograms 
exhibit significant maxima. The first histogram 
measures the number of singlet ion profiles that 
reach maxima in each time interval. The second 
histogram measures the total singlet ion abund­
ance above background at these maxima. These 
two types of histogram contribute complementary 
information for jUdging eluted component loca­
tions. Profile locations are measured to one-third 
of a spectral scan time and appropriate shifts are 
included to account for the fact that higher masses 
are measured at different times in each scan than 
are lower masses. This statistical approach, look­
ing for "clusters" of ion profile maxima in the 
histograms, does not depend upon a correct deci­
sion for each profile but rather on a preponder­
ance of good decisions looking over all the data. It 
will generally fail to resolve components that are 
eluted within less than about 1 spectral scan 
time of each other. 

(2) Calculation of Corrected 
Spectral Amplitudes 

Once the locations of components in the GC 
effluent have been determined, we proceed to 
compute a "resolved" spectrum for each material. 
The background (contributed by GC column 
bleed, MS background, and possible tailing from 
nearby high-concentration materials) is distin­
guished from the component signal by the fact that 
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it varies much more slowly with time. Reasona­
ble estimates can be made by assuming that for 
any particular mass fragmentogram the back­
ground amplitude is constant in the vicinity of a 
given component. This approach to background 
determination, using the actual fragmentogram 
characteristics around each eluted component, 
automatically tracks changes in the background 
levels observed during a run. This zero-order 
background approximation is subject to some 
error. A more accurate approximation would in­
volve representing the background variations 
over a larger span of spectral scans. The assump­
tion of a locally constant background estimate is 
justified, however, in that it produces results 
within the error limits from other data uncertain­
ties. 

To complete the estimation process we use a 
model profile to determine the contribution of 
each mass fragmentogram to the spectrum of the 
eluted component. Much work has been done on 
the analytic approximation of GC peak shapes 
(21,22). Our experience has been that relatively 
simple models do not adequately approximate the 
range of shapes encountered, and more complex 
models require large amounts of computing to 
determine model parameters. To obtain the 
profile shape and definition necessary for multiplet 
resolution within reasonable computing resources, 
we use tabular singlet profile models taken di­
rectly from the data. Such models, defined at 
discrete sample points, can be evaluated at any 
required intermediate point by interpolation [since 
the sampling theorem (20) is satisfied] and auto­
matically reflect any peak asymmetries that may 
be present. For a given eluted component, the 
model will be independent of mass, assuming 
that relative molecular fragmentation probabilities 
do not change with pressure within the mass 
spectrometer. 

During the process of computing the detection 
histograms, a list is kept of the sharpest, unimodal 
ion profiles in the region under analysis. When a 
component is detected in a given region, a model 
profile is then immediately in hand that can be 
used in the ion abundance estimation and back­
ground removal process. The local minima just on 
either side of the model profile are used to esti­
mate and remove the local background under the 
model. The selection of the sharpest profile as our 
model has worked well in producing models that 
are singlets and suffer least from interference 
by background and neighboring fragmentogram 
peaks. 

Given singlet ion profile models for each eluted 
component, the individual mass fragmentograms 
can be corrected and the true mass spectral inten­
sities for the components estimated. For the frag­
mentograms exhibiting peak maxima "near" the 
locations of the detected components, the ion 
profiles at the various masses are aligned on a 
common time origin to account for the time differ­
ence between collection of low- and high-mass 
data. Then, assuming a constant background, b, 
over the region of 5 to 10 scan intervals under 
consideration and letting Pt , Ou Rt , • •• represent 
the interpolated component profile models at 
times t (after normalization to unit area), the 
amplitude of the actual fragmentogram profile Y, 
at time t can be approximated by 

where p, q, r, . .. measure the eluted component 
amplitudes above background. Note that this 
model assumes a superposition principle based on 
the assumption of constant relative fragmentation 
probabilities and a linear encoding of ion current 
information. If ion current data are obtained from 
nonlinear electronic systems or read from film, the 
peak model itself would be amplitude-dependent 
and this linear analysis could not be applied until 
appropriate amplitude linearization corrections 
were made. From the model above we can derive 
an estimate for the component amplitudes 
p, q, r, . .. and the background amplitude b by 
standard least-squares procedures. It is worth not­
ing that this method, using tabular peak models 
and eluted component locations obtained from the 
detection histogram analysis, reduces the calcula­
tion for each mass spectrum intensity to the solu­
tion of a set of linear equations. Specifically, this 
avoids iterative methods for determining the 
parameters of a theoretical peak model and for 
determining component time positions. 

Fragmentograms are selected for this analysis 
on the basis of several criteria. Given the nominal 
eluted component positions from the detection 
histogram analysis, a fragmentogram is excluded 
(mass spectrum assigned zero intensity at that 
mass) if it has no significant local profile maxima 
or, for singlet components, if its maximum is dis­
placed from the detected component position by 
more than two-thirds of a spectral scan time on 
either side. 

In practice, we have not implemented this full 
procedure beyond the doublet case. Through the 
following approximations, reasonable results are 
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achievable within available minicomputer re­
sources. Using the histogram method described 
earlier, neighboring components are handled with 
a "look-ahead" procedure. That is, information 
about a component that has just been detected is 
stored and the detection algorithm is applied to 
the data in the immediate neighborhood by ex­
tending the range over which the detection histo­
grams are calculated. If by including this extended 
region an additional component is detected, we 
record the position of its mode, select a model 
profile for this second component using the sharp­
ness criterion, and initiate a doublet resolver al­
gorithm. At present, the extended histograms pro­
ject six spectral scan widths beyond the position 
where the first eluted component of the multiplet 
was detected (limited by computer memory). 

The doublet model represents an oversimplifica­
tion of the case of more complex multiplets, but 
by applying it to successive pairs of eluted compo­
nents (taking first-order account of peak tail con­
tributions from any earlier component), it pro­
vides acceptable accuracy and peak resolution 
effectiveness. Amplitude results for masses that 
belong to the second component of the doublet 
are stored temporarily until this component is 
moved into the processing window, at which time 
they are incorporated into the analysis of the 
newly detected component. 

iii. CLEANUP RESULTS AND LIMITATIONS 

The program based on the algorithm outlined in 
the preceding sections has been tested on a wide 
variety of biological samples. It fits comfortably 
into a DEC PDP-ll/45 computer (with 32K 
words of memory) and takes approximately 5 to 
10 min to analyze a raw GC/MS data set of 600 
mass spectra (scanned from masses 40 to 450). 
Much of this time is spent in reading the raw data 
from the disk and other input-output operations. 
Copies of the program, written in FORTRAN, are 
available from the authors. Currently, this pro­
gram runs as part of an automated analysis system 
for the GC/MS analysis of urine and blood sam­
ples. The program typically reduces the raw 
GC/MS data set of approximately 600 spectra to a 
set of about 60 resolved spectra for detected 
eluted components that are then matched against 
a library of mass spectra of biological compounds 
(19). This whole process takes about 20 min and 
produces an analysis of the sample, with known 
compounds in the mixture identified and the re­
maining unknown set marked for further study by 
chemists or other programs such as HISLIB (see 

Section d) or DENDRAL programs (see Chapter 
7). 

In evaluating the performance of the program, a 
major issue is how well it is able to detect eluted 
components in the data. The detect ability of unre­
solved components is clearly a function of their 
amplitude relative to neighboring components and 
background. One way to characterize this is to 
measure the ratio of the total ion abundance (sum 
of the mass spectrum amplitudes) in the resolved 
spectrum compared to that in the unproces­
sed spectrum, including background and overlap 
effects. In our experience, the program has diffi­
culty detecting components with this ratio much 
below about 5%. Also, if two compounds are 
eluted within less than 1 spectral scan time of 
one another, the program will probably detect the 
presence of more than one component, but there 
is an increasing chance that it will fail to resolve 
truly representative spectra for the components. 
Such errors are dependent on the ion current ratio 
between adjacent components, the similarity of 
their mass spectra, and the reliability with which 
peak positions can be determined. 

d. Quantitative Comparison of 
GC/MS Profiles (lHSLIB) 

i. INTRODUcrION 

In routine applications of GC/MS to study com­
plex mixtures of organic compounds, one fre­
quently needs to compare quantitatively current 
results with those obtained earlier. Such compari­
sons are important, for example, in (a) validation 
of analytical procedures used to isolate compo­
nents in complex mixtures; (b) development of 
historica:l libraries that might include complete 
summaries of past observations, compilations of 
controls, or other selected subsets of results; (c) 
computation of average mass spectra and relative 
retention" indexes (RRIs) of known compounds to 
improve the quality of existing libraries of mass 
spectral data; or (d) rapid comparison of new data 
to previously compiled library(ies) to detect differ­
ences in kind and/or amounts of individual com­
ponents. In this section, we describe a program, 
called HISLIB, designed to automate the task of 
quantitative comparison of GC/MS profiles ob­
tained on complex mixtures of organic com­
pounds. 

We define a "GC/MS profile" for a GC/MS 
experiment as an assembly of data consisting of (a) 
the (unnormalized) spectrum of each component 
after component detection, background removal, 
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Raw data 1. Removal of 
background 
and resolution 
of overlapping 
components. 

"Clean" 
spectra 

2. Calculation 
of peak areas 
for relative 
concentrations. 

2. Calculation 
of relative 
concentration 
using internal 
standards. 

Old 
historical 
library 

New 
historical 
library 

Figure 3-30. Major steps in processing a complete set of GC/MS data to establish and search an historical library. 

and resolution of overlapping components; (b) the 
retention index of each component; (c) the rela­
tive concentration of each component; and (d) 
(optionally) a name for each component that may 
be a simple experiment code or a name associated 
with the component during routine library search. 

This program is a logical synthesis and extension 
of several software tools (Fig. 3-30) and compares 
profiles of new mixtures with historical libraries of 
GCjMS data on related mixtures. Co-occurrence 
of components is established by matching both 

retention indexes and mass spectra, after proces­
sing by CLEANUP (see Section c), with the 
profiles in a historical library. Quantitation is done 
by comparing relative concentrations of compo­
nents, calculated using internal standards. A de­
tailed report of the methods involved and a com­
parison with other published work are given in the 
literature (16-18). 

We use HISLIB after a number of preproces­
sing steps have been applied to experimental data 
to maximize the quality and specificity of the 
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extracted information. Because library matching, 
determination of RRIs, and, particularly, measure­
ments of relative concentrations depend strongly 
on spectra free from background and overlapping 
components, we first process the GC/MS data with 
the CLEANUP program (15). Next we determine 
RRIs for each detected component to improve the 
specificity of library matches (23-25) and compute 
relative concentrations based on one or more in­
ternal standards. We then match each spectrum 
against an existing library of mass spectral data, in 
our case a library of compounds of biological 
interest (19). Finally, the resulting data are com­
bined with previous results to update the historical 
library or are compared against an existing histori­
cal library. The flow of data through these steps is 
summarized in Fig. 3-30. 

ii. PROCESSING STEPS FOR 

PROFILE COMPARISON 

(1) Automatic Determination of Relative 
Retention Indexes (RRIs) 

We use an extension of the method proposed by 
Nau and Biemann (23,24) for determination of 
RRIs. The procedure is automatic and calculates 
reproducible RRIs under variable instrumental 
and experimental conditions arising from unavoid­
able changes in initial GC column temperature, 
carrier gas flow, or temperature programming 
rates. It requires only three internal hydrocarbon 
standards for the analysis of a GC/MS run. 

As previously described (23, 24), each column is 
calibrated with a mixture of 18 hydrocarbons in 
the range n-ClO to n-C28 , thereby relating carbon 
numbers to mass spectrometer scan numbers. Sub­
sequent GC/MS experimental runs using that col­
umn are processed using these calibration data as 
reference. Three of the hydrocarbons used in the 
calibration run are added to each experimental 
mixture. The CLEANUP program is run to isolate 
representative spectra and to assign scan numbers 
corresponding to elution times for each compo­
nent. The TIMSEK program (Fig. 3-30) then lo­
cates the three added standards by matching their 
known spectra in windows about the expected • 
elution scan numbers and fits the three observed 
hydrocarbon scan numbers to those corresponding 
in the calibration run. We assume that differences 
in conditions between a given experimental run 
and the calibration run can be accounted for by a 
linear transformation of the elution time scale, 

Seal = ASexp + b (2) 

where Seal is a scan number in the elution time 
scale of the calibration file, Sexp a scan number in 
the elution time scale of the experimental run, and 
A and b the linear transformation coefficients. We 
determine A and b by minimizing the difference 
between the elution times of the three standards 
in the experimental and calibration runs using 
least-squares techniques. 

Once A and b are determined, (2) is used to 
determine the effective scan number for eluted 
components in the experimental run as trans­
formed to the calibration run time scale. These 
effective scan numbers are converted to RRIs by a 
linear interpolation or extrapolation using the 
nearest hydrocarbons measured in the calibration 
file (23,24). (If the GC is operated isothermally, a 
logarithmic interpolation/extrapolation is used.) 

This method differs from that of Nau and 
Biemann in that the least-squares fitting proce­
dure takes explicit account of both linear offsets 
and expansion or contraction of the scan 
number/retention index curve rather than simply 
optimizing about the midpoint of the range 
(23,24). 

(2) Determination of Relative 
Concentrations 

Relative concentrations are determined by 
TIMSEK (Fig. 3-30) based on anyone or combi­
nation of the internal standards selected by the 
user prior to obtaining GC/MS data. Ideally, stan­
dards should be chosen that reflect the kinds of 
compounds one wishes to quantitate, the variety 
of analytical procedures used to isolate mixtures 
to be analyzed, the sensitivity of spectra to chang­
ing MS conditions, and other considerations that 
affect accurate and reproducible quantitation 
using any analytical procedure. We wish only to 
point out that care must go into the selection and 
use of such standards. TIMSEK uses a preestab­
lished library of spectra of standards together with 
their RRIs. The standard(s) selected is searched 
for in the GC/MS data by looking for the closest 
spectrum match (5 below) within a narrow reten­
tion index window (±0.2 methylene unit). This is 
similar to the method of Sweeley et al. (25). 
Having found the internal standard(s), the relative 
concentration, Pi> of the ith component is calcu­
lated: 

p. = 100 areal TIC of ith component 
t areal TIC of internal standard (3) 

The "areal" total ion current (TIC) measures the 
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area of the GC peak of the ith component, not 
simply its height. The area for each GC peak is 
derived from the raw mass spectral data using the 
peak model determined for each spectrum during 
CLEANUP (15). The intensity (ion abundance 
expressed as peak height) of each mass in the 
spectrum of the ith component is determined by 
fitting the data-adaptive peak model to the inten­
sity profile for each mass (fragmentogram) about 
the position of elution of the component (15). 
Simpson's Rule is used to determine the area of 
the model peak. The areal total ion current for the 
ith component is then computed: 

I TIC - Ai(modeI) ~ I area i - t... im 
h.(modeI) m 

(4) 

where Ai(modeI) and hi(modeI) are the area and height 
of the peak model for the ith component and lim 

is the ion abundance (peak height) at mass m in 
the mass spectrum of the ith component after 
processing by the CLEANUP program. 

If more than one standard is used, the basis for 
relative concentrations is the average of the areal 
total ion currents for the standards. The inclusion 
of multiple standards provides the opportunity for 
a better statistical basis for computing relative 
concentrations, since statistical fluctuations in 
measuring the areal TIC of one are reduced by 
averaging with the areal TICs of the others. De­
pending on the relative quantities and reproduci­
bility of the various standards included, a weight­
ed average may be appropriate to account for 
different telative a priori uncertainties in the TICs 
among them. In our case, these are comparable 
and a straightforward average is used. An im­
provement in quantitation standard reproducibil­
ity can be expe!:ted increasing approximately as 
the square root of the number of standards in­
cluded. 

(3) Assembling an Historical Library 
of GCI MS Profiles 

An historical library is assembled by HISLIB by 
taking the GC/MS profile from an experiment and 
adding it to the library. If the library is initially 
empty, the profile becomes the library. If the 
library already contains at least one profile, the 
new profile is added as follows. Each spectrum in 
the new profile is compared to each spectrum in 
the library within a narrow retention index win­
dow (e.g., ±0.2 methylene, or ±20 RRI, unit for 

our work). A spectral match score is calculated: 

[ L em (prof) em (hist) r 
spectral score = 1000..:....:;m:=...-------

L e;'(prOf) L e;'(hist) 
m m 

(5) 

where spectra are reduced to the two most abundant 
ions every 14 u (26) and the spectral intensities 
are encoded before matching. The terms em (prof) 
and em (hist) represent the encoded intensities at 
mass m for the new profile and the historical 
library, respectively. They are quantized to have 
values 0, 1, 2, or 3, corresponding to the relative 
intensity ranges 0 to 4, 5 to 16, 17 to 64, and 65 
to 100% of base peak, respectively. 

The definition in (5) has several useful proper­
ties, based on Schwartz's inequality (27). The 
spectral match score calculated is independent of 
the order in which spectra are compared. If two 
ions of the same mass are present, a positive 
contribution to the score results. More abundant 
ions are weighted more heavily because of the 
squared term. The score is guaranteed to be 
between zero and 1000, 1000 representing a 
perfect match. Equation (5) is similar to the "de­
gree of coincidence" score used by lellum et al. 
(28), except that (5) uses encoded peak heights 
rather than just the number of peaks. 

The spectral match score and the proximity of 
the retention indexes are combined through an 
heuristic evaluation function (6a) that yields the 
final score. This "final score" is the spectral match 
score weighted by a trapezoidal function (6b) that 
penalizes for disparate RRIs. The weight is unity 
if the difference in RRIs is less than 5 units and 
decreases linearly to a threshold weight as the 
absolute difference in RRIs becomes greater than 
5 units up to the empirical cutoff of 20 RRI units: 

final score = (spectral score) . WU>RRI) 
(6a) 

where 5RRI = (RRIexp - RRIlib) and RRIexp and 
RRIlib are the relative retention indexes for the 

• experiment and library components, respectively. 
The weighting function, W(x), is defined by 

W(x) = 1 Ixl <5 RRI units 

maxscore - minscore (Ix 1- 5) 
= 1 X --'-,-:-,-.,---'--

15maxscore 5~lxl<20 
(6b) 

=0 
where maxscore = 1000 and minscore = 400. 
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If this final score exceeds 400, the experiment 
compound is considered a potential match to the 
library compound. If there is more than one po­
tential match between closely eluting experimental 
and library compounds, the ambiguity is resolved 
by a procedure (see below) that maximizes the 
overall correspondence between the pattern of 
experimental and library components. The min­
score value of 400 was derived empirically by 
examining the distribution of scores obtained by 
matching spectra in chemically related subsets of 
our library (19) with the other spectra in that 
subset. 

(4) Assignment of New Spectra to the 
Historical Library 

The last step in correlating a new profile with an 
historical library (Fig. 3-30) involves selecting be­
tween alternative matchings of experimental and 
historical library spectra with similarly high final 
scores. This occurs frequently among isomeric 
compounds with similar spectra and retention in­
dexes, and accidentally as, for example, among 
compounds whose spectra are similar owing to 
domination of the fragmentation pattern by ions 
from a functionality added during derivatization. 

We have implemented a pattern-matching pro­
cedure to resolve such ambiguities. Briefly, the 
procedure attempts to maximize the consistency 
between a new experiment and the library, assum­
ing that they are derived from similar mixtures. In 
a region containing ambiguities, a matrix represent­
ing every possible correspondence between exper­
iment and library spectra is analyzed using an 
algorithm that can trace and rank all self­
consistent "paths" through the matrix (29). Such 
paths include those which create new entries in 
the historical library, that is, paths with some 
spectra in the new profile not being matched to 
any existing spectrum in the historical library. 
Consistency constraints on the assignments in­
clude: (a) the scoring threshold must be exceeded 
for a match to be considered, (b) RRI order must 
be preserved, and (c) a spectrum in either set can 
be assigned to at most one spectrum in the coun­
terpart set. Finally, the "best" assignment is that 
which has the highest total score, where the total 
score is the summation of scores (6a) for each 
candidate pairing of spectra between the two sets 
(the score is not incremented for a spectrum 
found to be only in one set). This procedure is 
driven strongly toward maximum overlap between 
the two sets of spectra. This is justified when the 

matching threshold is high enough to reject dis­
similar spectra and the GC/MS profiles are from 
related mixtures. 

Once specific assignments have been made, 
spectra from the new profile are added to the 
library. New entries are created for components 
that scored less than "minscore" against library 
entries, or that were assigned as new entries by 
the above pattern-matching algorithm. When a 
pairing with an existing library entry is made, the 
new spectrum is averaged with the library spec­
trum for that entry, effectively weighting each 
contributing spectrum by its total ion current. At 
the same time, the new relative concentration and 
retention index are averaged with the previous 
values. Note that an important advantage of this 
approach is that components need not be iden­
tified by name, only by occurrence in terms of 
RRI and mass spectrum (30). 

(5) Comparing New Profiles to the 
. Historical Library 

Once a suitable historical library has been pre­
pared, subsequent profiles can be compared to it 
to detect similarities and differences (Fig. 3-30). In 
practice, we use the same program used to assem­
ble the library to perform the comparisons, chang­
ing only a flag that prevents using the new data to 
update the library and that causes a summary 
output to be produced indicating the results of 
comparison. Individual users may select different 
formats for such a summary. The one used in our 
laboratory was chosen to focus the attention of the 
user on components observed in significantly 
different relative concentration and on new compo­
nents present in the profile regardless of relative 
concentration. Reference 16 contains an exam­
ple of results for such comparisons. 

iii. APPLICATIONS AND LIMITATION 

The facilities provided by HISLIB suggest many 
types of applications. Examples include checking 
on the reproducibility of variables involved in instru­
mentation and analytical procedures used to study 
complex mixtures and detailed intercomparisons 
of complex mixtures such as those encountered 
in diagnostic medicine, where enhancements 
of GC/MS techniques are desirable (31). For 
example, we have presented examples of the 
use of HISLIB to evaluate two isolation procedures 
of organic acids from human urine (16). Since that 
time, a third, simpler method has been developed 
and HISLIB was utilized to compare the new 
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method with the previous two (6). The program 
quickly provided results on the precision of repli­
cate extractions for each method and on compo­
nents isolated more effectively by one procedure 
than the others. 

Because the historical library can be updated at 
will, it is easy to maintain a long-term history of 
analyses of a particular type of mixture. Mainte­
nance of several such libraries for different types 
of mixtures is a simple task. In fact, different 
historical libraries can be compared with one 
another, opening the possibility for comparison of 
results among laboratories engaged in similar re­
search. 

HISLIB averages spectra of the same com­
pound. Thus statistical variations in ion abund­
ances are reduced as additional examples are 
encountered. The resulting average spectrum is 
frequently of much higher quality than single 
spectra in existing libraries, and mechanisms have 
been implemented for adding averaged spectra to 
or replacing spectra in our primary library. This 
provides a procedure for gradual improvement of 
spectral libraries with time. In addition, RRls are 
included with the spectra, improving the specificity 
with which subsequent spectra are matched to the 
primary library. 

The method of comparing new profiles to an 
existing historical library quickly focuses attention 
on known materials present in abnormal quan­
tities and on new components. The latter become 
subjects for more sophisticated structure elucida­
tion procedures (32) that can now use the (high­
quality) mass spectral data directly to assist in 
solving the structures of unknowns (33). 

There are several limitations to the current im­
plementation of the HISLIB procedure that 
should be mentioned. We have not yet thoroughly 
investigated variations in relative concentrations 
with instrument operating parameters. The perfor­
mance of any mass spectrometer may change as a 
function of time. Any change in performance that 
affects the ionization of the internal standard(s) 
relative to other mixture components will affect 
results of quantitation. This can be avoided in part 
by using several different standards in each run. 

The spectrum-averaging scheme makes no deci­
sions about including ions of low abundance-all 
are included. Ions that occur infrequently are di­
minished in importance as additional spectra are 
averaged, but they are not rejected because we 
have not yet developed adequate heuristics for 
removing such ions. 

e. GCIHRMS Data System Design 

l. INTRODUCfION 

Low-resolution MS is a very powerful tool for the 
analysis of biological materials, particularly when 
coupled with effective computer support to 
minimize tedious and error-prone manual data 
processing. However, detailed identification of 
mixture components depends upon satisfactory 
library matching of spectra or upon inferring the 
structure from spectral clues and other informa­
tion that may be available from a knowledge of 
the origin and preparation procedures used on the 
sample. When novel components are encountered, 
such identification procedures may not succeed 
and one must seek other sources of information to 
determine the structure of the eluted component. 
One very useful refinement is the use of HRMS, 
which can give precise information about the ele­
mental compositions of spectral fragments (34). 
These can greatly assist the chemist's process of 
structural inference or can serve as an input to 
other computer programs designed to infer 
biomolecular structures (see Chapter 7). One of 
the virtues of HRMS is that it can also be used in 
conjunction with GC so that little additional sam­
ple preparation is necessary. One might consider 
using GC/HRMS routinely in place of GC/LRMS, 
but the sensitivity advantages, greater instrumen­
tal simplicity, and lower cost of GC/LRMS quickly 
relegate GC/HRMS to more special studies of 
structural unknowns. 

Data systems for photoplate and electronically 
scanned HRMS systems have been developed for 
many years (1) requiring various levels of operator 
intervention to assure accurate data reduction. 
The combination of GC with HRMS places special 
emphasis on reliable automation of the data sys­
tem and analysis procedures because of the very 
large amount of information c~llected and the 
complexity of data reduction (35). The following 
sections give summaries of several aspects of our 
GC/HRMS data system that we have found to be 
important for reliable, automated operation. 
These include optimum data sampling rates, data­
adaptive peak detection and multiplet resolution, 
pattern-driven reference peak location and scan 
modeling, rapid elemental composition matching, 
and effective operator feedback for monitoring of 
instrument performance and selective scan reduc­
tion. 



High- and Low-Resolution Mass Spectrometers 69 

ii. CRITERIA FOR OPTIMUM DATA 

SAMPLING RATE 

One of the most frequently encountered limita­
tions of GC/HRMS in biomedical applications is 
its sensitivity. For electronically scanned instru­
ments, the determining factors for sensitivity include 
the amount of material that can be introduced in­
to the mass spectrometer via the gas chromato­
graph, the ionization and focusing efficiency of the 
ion source, the resolution at which the instrument 
is operating, and the time that can be spent integrat­
ing the ion current at the sensor for each sample 
point in a mass spectrum. Assuming optimized gas 
chromatograph and source operation, the elution 
rate of the GC defines the time scale (scan rate) 
over which spectra must be collected to measure a 
particular mixture component. In turn, the ion 
integration time is determined by the instrument 
resolution, scan rate, and the required electronic 
sampling rate of the ion detector output. To max­
imize the ion integration time (and sensitivity), the 
sampling rate should be as low as possible. How­
ever, it must be high enough to encode the mass 
peak shape information needed for centroid calcu­
lation and mass multiplet resolution. A typical 
operation mode of many HRMS data systems is 
based on sampling rates that guarantee at least 20 
samples across each mass peak (35,36). Our 
analysis and experience shows that this criterion is 
too high by more than a factor of two and would 
result in a significant loss of sensitivity in applica­
tions involving GC/HRMS, in addition to placing 
a very large data rate burden on the data system 
computer. Based on the results summarized 
below, we have been operating our high­
resolution system with a sampling rate, r, given by 

11.5R 
r>-­

tdec 

(7) 

where R is the spectrometer resolution (5% peak 
width) and tdec the exponential scan time per decade. 
This sampling rate is equivalent to requiring 5 to 10 
sample points across a mass peak and assures, for 
trapezoidal or Gaussian-like peak shapes, that the 
peak envelope may be accurately reconstructed 
from suitable data interpolations. 

A key issue in achieving these results is the type 
of ion detection system used. On many systems 
the output analog signal from the ion multiplier is 
lowpass-filtered and sampled periodically with a 
sample-and-hold analog-to-digital converter. The 

bandwidth of the lowpass filter should be cho~en 
appropriate to the sample rate. It must be high 
enough so as not to reduce instrument resolution 
and low enough that ions arriving since the last 
sample measurement contribute as much weight as 
possible to the next one. When a simple RC filter 
is used (typical of many commercial systems), 
these criteria are hard to reconcile and typically 
the bandwidth is adjusted for acceptable resolu­
tion, which means that ions arriving early in the 
sample interval will have a lower weight than 
those near the end. As the sampling rate changes, 
this bandwidth must also change to preserve the 
"optimum" trade-off. We believe this issue ac­
counts for the higher sampling rate requirements 
published earlier (36), where an analysis com­
pared mass errors in an experiment run obtained 
by reducing the data using every sample point 
collected at 10K samples/s and by reducing the 
same data using every fourth sample point. There 
was no apparent adjustment of the effective filter 
bandwidth for the lower-sample-rate case to take 
advantage of the improved ion statistics available. 
This, combined with the limited amount of data 
analyzed, accounts for the conservative result pub­
lished. 

In contrast, our system uses an "ideal inte­
grator" that linearly integrates the signal con­
tribution for each ion detected between samples 
and, after its output is measured for a given sam­
ple point, is reset to zero. Thus each incident ion 
contributes maximally to the digitized signal, no 
matter when it arrives between samples (no filter 
rolloff) , and .each sample is independent of the 
others. Since the detector integrates uniformly be­
tween sample points and is reset to zero at the 
start of each interval, there is no blurring of 
adjacent samples, and the effective bandwidth of 
the "ideal integrator" automatically adjusts for 
different sampling rates. 

One can intuitively sense that an "optimum" 
sampling rate exists for particular instrument per­
formance parameters from the signal behavior at 
the extremes of low and high sampling rates. For 
very low rates, peaks will be encoded into a single 
integrator cycle or sample point. The location of 
the actual peak is subject to a large error, since 
the peak may have occurred anywhere within the 
integrator time and the same output would have 
resulted. Also, such single sample peaks would be 
very difficult to separate from other background 
noise and many false detections would be made. 
On the other hand, for very high rates, a peak will 
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have many samples taken in its course. Each sam­
ple will be the result of integrating the ion current 
for only a relatively short time and hence will have 
an amplitude subject to higher ion "shot" noise 
errors the higher the sampling rate. For a given 
peak ion current and at high-enough sampling 
rates, there may be a significant likelihood that 
too few ions arrive for some samples so that they 
will dip below the background noise and the peak 
envelope will be fragmented into two or more 
separate peaks. Between these two extremes lies 
an optimum sample rate for encoding the peak 
location and shape information. 

Analytically, if the ion detector output is meas­
ured with an ideal integrator, the centroid errors 
introduced by sample spacing and by ion statistics 
are defined by 

f tf(t - to) dt L m 8t(lLm + Nm) 
E =-----

c f f(t - to) dt L (/Lm + Nm) 

(8) 

where f(t- to) = continuous peak envelope (cen­
tered at to) measuring the ex­
pected ion current distribution 

8t = sample interval 

ILm = S~:::~~~~~~: f(t - to) dt = expected 
number of ions arriving during 
interval m 

Nm = deviation between the actual 
number of ions collected during 
interval m and the expected 
number 

We define the area A to be the total expected 
number of ions in the peak, 

and assume that the ion fluctuations arise from 
Poisson arrival statistics so that 

(Nm}=O 

(NmNn) = { 0 
ILm 

mfn 
m=n 

where the sample independence implied by the 
ideal integrator has been used. Equation (8) may 
be expanded and the expected error and variance 
in the centroid calculations estimated by averaging 
over peak locations and ion arrival fluctuations. 
Keeping terms to second order in the ion noise, 

one can deduce that 

(EJ=O 
and 

S/ = (E/) = s;amp + s~on (9) 

where Sc 
2 is the variance in centroid calculations 

consisting of two independent components. The 
first component, s;amp, is that due to discrete sam­
pling and is given by 

2 -(
27rff 1-( )f-( )1 2 

Ssamp -"""""}\2 dw cp w w (10) 

where iP (w) is the Fourier transform of the sawtooth 
function, 

cp(t)=t-m8t (m -1) 8t< t«n +1) 8t 

m = ... ,-1,0,1,· .. 

and l(w) is the Fourier transform of the expected 
peak envelope. The second component, sfom is 
that due to ion arrival statistics and is given by 

2 
2 _ Speak 

Sion-T (11) 

where S~eak is the calculated width of the ion peak. 
These expressions can be evaluated analytically 

for particular peak shapes and are in good agree­
ment with Monte Carlo simulations of centroid 
error statistics. The dependence of centroid error 
on sample rate for Gaussian peaks sampled with 
an "ideal integrator" and containing various num­
bers of ions is shown in Fig. 3-31. The key result 
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Figure 3-31. Results of a Monte Carlo simulation of 
the relationship between computed centroid accuracy 
and sample rate for Gaussian peaks containing various 
numbers of ions. The peaks are sampled with an "ideal 
integrator" and sample values are subject to Poisson­
distributed fluctuations. 
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evident in these plots is that there is little im­
provement in centroid accuracy to be gained by 
sampling the ion current output more frequently 
than about two or three samples per peak! These 
plots are not to be interpreted to mean that the 
errors included here are the only ones affecting 
mass accuracy. There are other significant error 
sources (e.g., electronic noise and exponential 
scan model defects) that further compromise mass 
accuracy, so one may not achieve these theoretical 
accuracy limits in practice. In fact, the other error 
sources make it difficult to evaluate the effects of 
sampling and ion statistics alone using actual 
spectrometer data. The main effect to be observed 
in a proper statistical analysis of actual data is that 
there is no improvement in mass measurement 
accuracy by increasing the sampling rate above the 
limits given above. 

In some circumstances, there is another data 
analysis requirement, however, that warrants sam­
pling faster than two or three samples per peak, 
even with the resulting loss in sensitivity. When 
unresolved mass multiplets are encountered in 
samples, either between the sample ions them­
selves or between sample and reference com­
pound ions, a higher instrument resolution must 
be used or the peak envelope must be more 
accurately encoded to allow more sophisticated 
computer analysis. The sampling rate limit derived 
above, based solely on centroid errors, clearly 
cannot give a very good approximation· to the 
detailed peak envelope. The sampling rate re­
quired for this latter case is given by the Nyquist 
sampling criterion (20) based on the complexity of 
the envelope shape. The Nyquist criterion states 
that the sampling rate must be at least twice the 
highest-frequency component in the Fourier trans­
form of the envelope. Given samples collected 
with at least this rate, an interpolation procedure 
exists to compute any intermediate point on the 
peak envelope. For a Gaussian peak shape, there 
is clearly no highest-frequency component. But, in 
the presence of noise, it does not make sense to 
encode frequencies above where the noise trans­
form begins to dominate the peak envelope trans­
form, that is, where the envelope errors from 
noise dominate interpolation errors from under­
sampling the data. In fact, from the statistical 
properties described earlier in the discussion of 
centroid error, it is clear the noise amplitude 
increases with increasing sampling rate. Since we 
must encode the envelopes of peaks with differing 
numbers of ions, we have adopted a compromise 
for the highest peaks, consistent with these noise 

limits. We sample at a frequency of twice that" 
where the peak transform falls to 5% of its max­
imum. This rate corresponds to a sample spacing 
of about five samples across the peak envelope. 
Examples of the trade-off between sample rate 
and envelope reconstructability are given in Fig. 
3-32. Figure 3-32a shows a Gaussian peak 
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Figure 3-32. Examples of the effects of sampling rate 
on the reconstructability of peak envelopes. Each graph 
shows the expected ion current profile (a Gaussian with 
total area of 100 ions), an example of a set of sampled 
data poi~ (measured with an "ideal integrator") with 
Poisson ion fluctuations, and an optimally reconstructed 
(interpolated) envelope. (a) Ion current profile sampled 
at the limit given by (7). (b) Ion current profile sampled 
at four times the limit given by (7). Note that the higher 
sampling rate (b) does not offer an advantage, since each 
sample point integrates fewer ions and hence is subject 
to greater amplitude uncertainties. These uncertainties 
offset the bene~ts of the higher sampling rate. 
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• containing 100 ions, sampled according to the crit­
erion above, and then reconstructed with an op­
timum filter (20) to estimate the original nominal 
peak. Figure 3-32b shows the same Gaussian 
peak, sampled at a rate 4 times the foregoing limit 
and also optimally reconstructed. Note that the 
noise in the envelope samples of this latter case is 
considerably higher than in the former and that no 
improvement results in the estimation of the origi­
nal peak. The fact that the centroid of the peak in 
Fig. 3-32a is shifted to the left by about 3 ppm is a 
statistical accident of the particular peak example 
shown and is not related to the lower sampling 
rate (3 ppm is consistent with the expected cen­
troid error for 100 ion peaks as shown in Fig. 
3-31). 

iii. PEAK DETECTION AND MULTIPLET 

RESOLUTION 

Another important feature of an automated 
high-resolution data system is the ability to per­
form correctly under varying instrument operating 
conditions. On a day-to-day basis, many parame­
ters of instrument performance are subject to 
change affecting, for example, signal gain, system 
noise level, resolution as a function of mass, mass 
peak shapes, and background level. Before sample 
measurements are made, a mass spectrometer is 
typically tuned up and calibrated by running refer­
ence compound spectra. However, during the ex­
tended time required for GC/HRMS operation, 
some of these parameters may change. Our data 
system has been designed to construct dynamic 
models of instrument parameters for use in setting 
thresholds for mass peak detection and measuring 
singlet peak characteristics to detect and resolve 
multiplets. These models are derived directly from 
the data as part of the real-time data reduction 
processing. 

(1) Data-Adaptive Peak 
Detection Threshold 

In processing instrument scans we take advan­
tage of the fact that most of the scan time is spent 
between mass peaks. This gives an opportunity to 
set the best threshold for detecting mass ~eaks so 
as not to miss minor peaks or to overburden the 
system with noise spikes. A short time after the 
scan is started, while filling up the first data buffers 
to be recorded, we compute a signal amplitude 
histogram based on 400 sample points. This his­
togram measures the frequency of occurrence of 
amplitude values versus amplitude. Since the amp-

litude of background noise is random, this histo­
gram will have a distribution predominantly deter­
mined by the statistics of stray ion events, dark 
current, and other electronic noise. The mode of 
the distribution measures the background offset 
and the standard deviation the noise amplitude. 
Occasionally, a peak may be included in the his­
togram collection. This will show up as a broaden­
ing of the noise histogram on the side above the 
mode, since the peak rides nominally on the aver­
age background level. Thus we can estimate the 
noise level, even in the presence of mass peaks, by 
measuring the histogram width below the mode. A 
data-adaptive detection threshold can then be set 
equal to the histogram mode plus an appropriate 
factor times the noise amplitude. This approach 
adapts well to background shifts and eliminates 
concerns about background changes with ion mul­
tiplier or other electronic adjustments. 

(2) Data-Adaptive Multiplet Resolution 

Even at common HRMS operating resolutions 
of 10,000, mass multiplets are encountered. In 
batch mode, given enough sample, one can resort 
to "ultra-high-resolution" operation to resolve 
such multiplets. In GC/HRMS this is not possible. 
Because of critical sensitivity constraints in 
GC/HRMS mode, it is important to minimize 
instrument resolution requirements so as to max­
imize sensitivity. For this reason, we reduce the 
resolving power of the mass spectrometer to 1 
part in 5000 to 8000 to achieve better sensitivity, 
even though this increases the probability of unre­
solved mass peaks. In this mode, the data system 
must be able to cope with such unresolved mass 
peaks in order to reliably reduce the scans. 

During instrument calibration with the refer­
ence material, we analyze the size, shape, and 
spacing of mass peaks to report to the operator 
information about instrument performance. This 
includes scan speed and duration, instrument sen­
sitivity, resolution as a function of mass, and the 
quality of the fit between the actual instrument 
scan and the exponential scan model used in the 
data system to compute accurate sample masses. 
These data are used iteratively to tune the instru­
ment. During a GC/HRMS run, however, peak 
shapes may change because of instrument tuning 
drifts or because of varying degrees of ion source 
saturation with effluent concentration. Since in 
order to resolve peak multiplets one needs to 
know the characteristics of a singlet peak, we must 
extract a model for a singlet peak from the real­
time data. This model must also track the 
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variations of singlet peak shape with mass 
that are present in most instruments. 

General approaches to multiplet resolution 
based on optimum detection filters (20) are too 
costly for routine application in real time. Rather, 
we have developed a scheme that is very economi­
cal for the most common case of doublets and that 
can be run in real time, deferring more complex 
but fortunately rare multiplet cases for later 
analysis. In our approach, we characterize each 
peak by its area, centroid, and its second and third 
moments. * A singlet model is initialized by 
analyzing the first 10 significant peaks of a scan, 
assuming that these will be predominantly singlets. 
We throw out deviant peaks in this set by a 
"majority rules" logic. Successive peaks are clas­
sified as singlets or multiplets by a comparison of 
their second moments with the observed second 
moments in the singlet model using the following 
discriminant function: 

If S2> So 2 + fSD(so 2), then 

else 
the peak is a multiplet 
the peak is a singlet 

(12) 

where S2 and So 
2 are the second moments of the 

sample peak and singlet model, respectively, SD is 
the standard deviation of the second moments of 
the peaks comprising the singlet model, and f is a 
factor relating to the confidence that singlets will 
not be considered as doublets (we typically use 
f = 2). If the peak is not a singlet, it is analyzed as 
a doublet with the areas and locations of the two 
components given by 

Asmau=~(l-~l-~ ) 

A large = ~( 1 + ~1-4:G ) (13) 

X X ~Aright (2 2) 
left= 0- "A S -So 

left 

X -X ~ A left 
(2 2) right- 0+-A S -So 

right 

where "small" and "large" refer to the larger and 
smaller of the multiplet components, respectively, 
and "left" and "right" refer to the time ordering 
of the peaks in the scan. Also, Xo is the centroid 

* The nth moment of a peak is given by J(x - xo)np(x) dx, 
where p(x) is the peak envelope (normalized to unit area) and 
Xo is the peak centroid. 

of the multiplet profile and 

G 
(K3 -K0

3
)2 

(S2- S02? 

where K3 and K0 3 = third moments of the multiplet 
profile and singlet model, res­
pectively 

and the left-hand peak is the smaller (Asmau) if 
K3<K03. 

If the superposition of singlet models at the 
resolved locations and with the computed sizes in 
fact closely approximates the multiplet envelope, 
the peak complex is labeled a doublet. If not, the 
peak complex is a higher-order multiplet that has 
to be resolved by more complex means. 

The singlet model must be constantly updated, 
since peak envelope shapes and instrument resolu­
tion change as a function of mass. As a new peak 
is classified as a singlet, if it is of significant size, it 
is added to the model and the oldest peak in the 
model removed. In this way the model adapts 
dynamically to the data along the mass scale as 
peaks are processed in real time during a scan. 

These decision criteria and doublet resolution 
calculations are subject to errors that depend on 
the number of ions in the peak, the relative sizes 
of the doublet components, and their separation. 
For equal peaks containing 500 ions each and 
separated by 1 peak standard deviation (20 ppm at 
a resolving power of 10,000), the algorithm recog­
nizes 98% of the doublet peaks encountered. For 
such doublets, resolved locations are subject to an 
error (std dev) of 5 ppm and the areas to an error 
of 40%. At a separation of 2 peak standard devia­
tions, all 500 ion doublets are recognized, resol­
ved centroids are accurate to 2.2 ppm, and areas 
to 11 %. This method cannot resolve doublets that 
are not detectably wider than the singlet peak 
model. Such doublets can, however, be detected 
and resolved based on accurate mass measure­
ments and inferred elemental compositions of ions 
(37). 

iv. REFERENCE SPECTRUM DETECTION AND 

SCAN MODELING 

In GC/HRMS analysis of complex mixtures, 
one cannot guarantee that the reference com­
pound will always' have the most negative mass 
defects or ,that its peak amplitudes will be readily 
distinguishable from those of the sample. Thus a 
highly reliable means is needed to distinguish ref .. 
erence from sample peaks for use in accurate mass 
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assignments. This scheme must track instrument 
scan drifts and relative changes in reference to 
sample amplitudes so that all spectra can be re­
duced without time-consuming manual interven­
tion. Our approach has two phases; initial detec­
tion of a group of reference peaks followed by the 
incremental detection of neighboring reference 
peaks. 

(1) Initial Reference Detection 

To find an initial set of reference peaks in a 
sample spectrum, we match a pattern of reference 
peaks from the instrument calibration run (refer­
ence only) against a collection of "reasonable" 
candidate patterns in the sample spectrum. If 
{~, T;} is the set of mass-time pairs for pattern 
members in the reference run, there may be sev­
eral reasonable candidates (~, {tj };} for each pat­
tern member in the sample run. We use a pattern 
of 10 calibration peaks and consider up to three 
candidates for each pattern member in the sample 
spectrum. Such candidates are chosen on the basis 
of their proximity within windows to the locations 
of pattern members estimated from the reference 
run, taking into account the time shift observed 
for the candidate reference compound base peak, 
and a comparison of peak areas expected based on 
the calibration run. 

The plausible reference patterns in the sample 
spectrum (one of the candidates chosen corres­
ponding to each reference pattern member) are 
compared against the reference run pattern after 
adjusting the observed times of the sample pattern 
members to fit those of the reference run most 
closely. This adjustment uses a simple exponential 
scan model 

and accounts for possible changes in instrument 
scan parameters between the time of calibration 
and the sample run. To first order, if there were a 
change in scan parameters, the times of the cali­
bration peaks would be shifted by 

dt; = dto -In (~) d'T (14) 

Scan parameter adjustments are selected for each 
of the sample patterns so as to minimize the 
mean-squared difference in times between corres­
ponding members in the sample and reference run 
patterns. We also admit the possibility that for 
some pattern members no reference peak can be 
found in the sample spectrum (e.g., if the refer­
ence compound is sufficiently suppressed relative 

to the sample). When a member is eliminated, a 
"mismatch" penalty is included in computing the 
mean-squared difference in times that is equal to 
the mean error in a fit of the exponential scan 
curve to the reference pattern. This prevents the 
best pattern from being that with all peaks thrown 
out. 

The set of peaks in the sample spectrum corres­
ponding to the reference pattern is then selected 
to be the candidate pattern that corresponds most 
closely to the pattern in the calibration run, that is, . 
has the smallest mean squared adjusted time loca­
tion difference between its members and those of 
the calibration pattern. This type of reference 
detection process works quite reliably in the pres­
ence of complex sample spectra and adapts to 
changes in the instrument scan function. 

(2) Incremental Reference Detection 

Once an initial set of reference peaks is iden­
tified in the sample spectrum, sample masses span­
ned by these peaks are interpolated using a scan 
model given by 

[ 
-(t-t) ] 

M(t) =A +exp b 0 2 
a + t+ct 

(15) 

which we have found most closely approximates 
the scan peculiarities of our Varian MAT 711 and 
AEI MS-9 instruments while, in addition, being 
easily computable. The mass offset (A in 15) at 
infinite time is important since the asymptotic field 
of the magnet does not necessarily correspond to 
zero mass at the detector. 

We also use this function to extrapolate to find 
the best candidate for the next reference mass. 
The system projects to find the expected time of 
the next reference peak and searches for candi­
dates in a window around that location. If none is 
found, it is assumed the reference peak is missing 
and a projection is made for the next one. If one is 
found, it is assumed to be the reference peak and 
the sample peaks spanned by it are interpolated. If 
more than one candidate is found in the window, 
we pick the two closest to the expected location. 
Each of these is used to project for the following 
reference peak. If only one succeeds to find a 
unique peak, it is chosen as the appropriate alter­
native. If both succeed, the pair with locations 
best corresponding to those in the calibration run 
(after applying shifts for scan differences as de­
scribed above) is chosen. 

This scheme has proven quite reliable in finding 
reference peaks among sample spectra conflicting 
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with the reference spectrum. It also has the neces­
sary data adaptivity to track instrument drifts over 
GC/HRMS experiment time. 

V. ELEMENTAL COMPOSITION MATCHING 

One of the principal results of HRMS is the 
tabulation of elemental compositions consistent 
with the mass assignments for spectral peaks. In 
GC/HRMS such composition matching is done 
many times and a highly efficient computer al­
gorithm is essential. Our system uses a fast table­
lookup matching algorithm described by Leder­
berg (38). By tabulating mass defects for a range 
of hydrogen, nitrogen, and oxygen combinations 
that have nominal masses equal to multiples of 
l2C, a simple lookup in the table, using the ob­
served defect as an index, will give a candidate 
composition. Other heteroatoms and l2C_ 
equivalent mass components are evaluated by se­
quential subtraction and further table lookup. The 
ability to translate from a mass defect to a com­
position by means of a lookup in a compact table 
is what makes this algorithm very fast. 

vi. EXAMPLES AND LIMITATIONS 

We have used GC/HRMS as an adjunct to the 
more routine GC/LRMS analyses of biological 
mixtures. When eluted components are encoun­
tered that cannot be identified by simple library 
search, we have as an option using GC/HRMS to 
give more precise clues to the structure, assuming 
that enough of the component is present. Exam­
ples of the use of this kind of information as a part 
of procedures for the determination of unknown 
structures are given in Chapter 7. 

Using the procedures outlined above, the vast 
majority of scans taken during a GC/HRMS run 
can be reduced automatically, with no interven­
tion by the operator. These techniques fail when 
the spectrum of the reference compound is overly 
suppressed during the elution of an abundant GC 
effluent. Such scans are not reducible to accurate 
masses and compositions. 

GC/HRMS is limited in its application by in­
strument sensitivity. In order to get reasonable 
elemental composition specificity on our instru­
ment, we need to take mass spectra at resolving 
powers below 10,000 and usually at 5000. In 
order to use the CLEANUP procedure (see Sec-' 
tion c) at our GC elution rates, sampling consider­
ations demand that spectra be scanned as rapidly 
as is possible on our instrument (i.e., at about 
2 s/decade). In practice, we often scan at lower 
rates to balance sensitivity, scan duration, and GC 

peak width. We use 8 to 10 sec/decade for packed 
GC' column studies of natural marine products or 
minor constituents in urinary extracts. Our instru­
ment is currently not equipped for capillary col­
umn GC/HRMS analyses, which can do a better 
job of separating closely eluting materials. Acquir­
ing interpretable spectra with the much narrower 
peaks from capillary GC places even more em­
phasis on faster mass spectrometer scan rates and 
is a difficult problem that we have not been able to 
attack. 

These constraints place rather stringent limits 
on the achievable sensitivity. Absolute sensitivity 
figures, of course, depend on the overall efficiency 
of the GC/separator/MS system and on the frag­
mentation pattern of the spectrum being analyzed. 
For free sterol mixtures, a common but very 
difficult application in our laboratory (7-10), we 
are able to measure spectra with a 100 : 1 dynamic 
range of ion abundances for sample amounts as 
low as 1IJ-g with our current instrument. 

f. Conclusions and Summary 

It seems clear that the computer will play an 
increasingly important role as a problem-solving 
tool for molecular structure elucidation in general 
and for GC/MS applications in particular. As 
more and more routine use is made of these 
analytic tools, the only tractable way of managing 
the volume of data produced and correlating the 
derived information with other experimental results 
is more fully automated data systems. Because 
the human being will be unable to systemat­
ically review' intermediate results, it is imperative 
in such systems that reliability and accountability 
be built into the programs comprising them. Such 
responsibility requires an increasing level of intro­
spection on the part of the programs as they 
perform their tasks. Assessments of the quality of 
the results the programs produce must be based 
on models of the instruments and data they are 
supporting. Such qualification of results can then 
be used to most effectively deploy human re­
sources to problems of ambiguity, particular diffi­
culty, or anomaly relating to past experience. The 
earlier sections describe several developmental 
steps in this direction that have been of significant 
benefit to our own applications and that we export 
to other laboratories within our available re­
sources. We feel that as new commercial systems 
are engineered, they must pay increasing attention 
to the quality and depth of software support pro­
vided to analytic instrumentation. 

.--
.... --
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Kalamazoo, Michigan 

a. Introduction 

The Upjohn Physical and Analytical Chemistry 
System (UPACS) is an IBM-1800-based time­
sharing computer system' for laboratory automa­
tion. The computer is a 32K 16-bit word machine. 
At present the following instruments are inter­
faced to the computer: 

1. One X-ray diffractometer (Syntex p-l). 
2, One NMR 13C and lH spectrometer (Var­

ian XL-100). 
3. One CD/ORD spectropolarimeter (Cary 

60). 
4. Five liquid scintillation spectrometers. 
5. Two elemental analyzers (Perkin-Elmer 

240) plus balance. 
6. Five gas-liquid chromatographs with auto­

matic injection. 
7. Three mass spectrometers with GC attach­

ments. 

All instruments interfaced to this computer can 
operate simultaneously, without interference and 
the data are acquired and processed in real time. 

In the original volume of this book, D. A. 
Griffith described the original interfacing of the 
LKB-9000 to the IBM 1800 computer. Based on 
this scheme, a second mass spectrometer-the 
Atlas MAT CH-4-was interfaced to the IBM 
1800 in 1972. Since both mass spectrometers were 
using the same interface and the same programs, 
each one could be operatecfWith the exclusion of 
the other, that is, when the LKB-9000 was scan­
ning, it would lock out the Atlas MAT CH -4, and 
vice versa. Also in the original system, the com­
munication between the operator and the compu­
ter was performed via thumbwheel switches (di­
gits) and function switches (print, plot, store and 

background subtract). This system functioned well 
within its original design limitations. 

In 1974 we acquired an additional mass spec­
trometer, the Varian MAT CH-7, and a year later 
we replaced the Atlas MAT CH -4 with the Varian 
MAT CH-5 DF mass spectrometer. At the same 
time the disk storage capability of the IBM 1800 
computer was expanded by the addition of two 
2311 disk drives, which added 7 million words of 
disk space to the system. This allowed all raw and 
processed data to be stored on disk. The addi­
tional instrumentation, as well as the extra disk 
storage capabilities and the need for a more flexi­
ble and powerful processing of the data, prompted 
us to rebuild and rewrite the MS system. 

All extension of the system became possible 
when the IBM 1800 computer was linked via a 
high-speed digital interface to the IBM 370/155 
research computer. This computer is used for stor­
age of the mass spectral library and for searching 
this library. The various stages ofdevelopnient of 
this system were reported previously (1-3). 

b. Hardware Interface 

The interface between the three mass spec­
trometers (Varian MAT CH-5 DF, LKB-9000, 
and the Varian MAT CH-7, which was recently 
upgraded to the CH -7 A) was designed and con­
structed in our electronics laboratories. Digital 
mass markers using Hall probes were installed on 
the Varian MAT instruments. The original mass 
marker of the LKB-9000 was used without mod­
ification. A schematic representation of the inter­
face is shown in Fig. 3-33. 

A Texas Instrument Silent 700 printer­
keyboard terminal is located at each instrument 
and serves as input/output device to the computer. 
The communication between the MS laboratory 
and the IBM 1800 computer is initiated by 
depressing the SERVICE REQUEST button, 
which is mounted on the terminal. Two other 
buttons (SCAN and TERMINATE) are also 
mounted on the panel of the printer-keyboard 
terminal. Other functions that are under the con­
trol of the operator are the sampling rate of the 
data (5.0, 2.5, 1.25 kHz, etc.), a fixed threshold 
button, a mass limit setting, which is dialed in 
through thumbwheel switches, and four function 
buttons (Print, Plot, Store, and Background Sub­
tract). The four function buttons are remnants 
from our previous interface. These functions are 
usually implemented through commands typed on 
the keyboard terminal. Finally, two meters (one 
for single ion monitoring and the other for total 
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