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INTRODUCTION 

The subject of resolution arises in virtually all applications of fac
simile systems and particularly so for spacecraft television systems. 
Prior to a spacecraft mission, system and trajectory variables must be 
optimized with respect to expected picture quality. Clearly, the overall 
system resolution depends on many things including the scene proper
ties determining contrast, image motion, atmospheric turbulence, 
system characteristics, and characteristics of the observer viewing the 
scene reproduction. It is very difficult to do laboratory resolution 
measurements to determine the interdependence of system resolution 
on all of these factors. It is nevertheless necessary to know this depen
dence in order to analyze and optimize system variables with respect to 
picture resolution. Thus the object of this paper is to calculate a figure 
of merit measuring the resolution of a complex facsimile system 
including the effects of the factors described above and to present 
the results in a form useful for system design and general analysis. 

For extended scenes such as the Moon, a useful measure of resolution 
is a dimension of the smallest typical object in a scene which can be 
detected by an observer using the system. Normally, the scene repro
duction will be a photograph displaying the scene brightness distribu
tion degraded by loss of definition, noise, etc., and the observer is taken 
to be the human eye-brain system which is sensitive to brightness. 
Although this situation will be considered here, it is clearly not the only 
case of interest, since facsimile devices and observers (microphoto
meters or computers) can be visualized which respond to information 
distributions in many different ways. In any case, the observer must 
be capable of determining whether signal-plus-noise or simply noise is 
present at the output. Schadel has made measurements on the de
tectability of isolated objects displayed against uniform backgrounds 
and finds that a signal-to-r.m.s.-noise ratio of 3 gives a detection 
probability of about 80%. 

t This paper presents the results of one phase of research carried out at the Jet 
Propulsion Laboratory, California Institute of Technology, under contract NAS 7-100, 
sponsored by the National Aeronautics and Space Administration. 
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Using this result, a figure of merit measuring picture resolution can be 
defined as the length of a side of the smallest uniformly bright square 
displayed against a uniform background which produces a signal-to
r.m.s.-noise ratio of 3 for an observer. The brightnesses of the square 
and its background are determined by the characteristics of the scene 
and lighting which produce contrast. For the Moon, these characteris
tics would be the illumination and viewing geometry, the surface 
reflectance function, and the average slope of relief features. 

The problem is therefore, to calculate, as a function of size, the signal
to-r.m.s.-noise ratio produced at the observer's output when viewing 
the degraded reproduction of a uniform square on a uniform background. 

Scene 

Facsimile 
system -

Output 
facsimile 

FIG. 1. Schematic diagram of facsimile process. 

Observer 

The calculation must account for effects due to image motion, atmos
pheric turbulence, and facsimile system transfer characteristics. From 
this result the figure of merit will be equal to the size of the square 
which produces a signal-to-r.m.s.-noise ratio of 3. A schematic diagram 
of the system to be analyzed is shown in Fig. l. 

ANALYSIS OF SYSTEMt 

An attractive mathematical approach to this problem lies in the 
formalism of linear-system analysis. Such an approach allows many 
varied effects to be included in a unified and consistent manner. The 
assumptions made in using linear analysis are: (I) the system processes 
a sum of input functions as if each term of the sum were processed 
separately; (2) there exists a complete set of functions each of which ~ 
when processed by the system is changed only in normalization (these 
functions are usually taken to be sine waves). The justification for 
applying these assumptions to practical systems usually relies on small-
signal arguments which are straightforward and will not be repeated 
here. It should be noted that this linearity ass11mption is fundamental 
to this calculation since almost all subsequent steps rely on it. 

Because of the importance of the above assumptions, a short digres
sion on their practical application is in order. A linear facsimile system 

t See p. 353 for list of symbols. 
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can be described by three inherent properties: (1) the uniform field 
transfer characteristic measuring the conversion of d.c. input ampli
tudes to output amplitudes; (2) the eigenfunction (sine-wave) response 
characteristic measuring the relative normalization degradation as a 
function of the eigenfunction parameter (spatial frequency); and (3) the 
noise power spectrum of the system appearing at the output. Clearly 
the second property is the most important since it enables the response 
of the system to an arbitrary varying input to be predicted. Thefact 
that the response of a system to a sine-wave input is also a sine wave is 
not obvious a priori and cannot be demonstrated as in the case of 
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FIG. 2. Typical uniform field transfer function for a Ranger spacecraft camera system 

simple electrical and mechanical systems. Whereas this point is cur
rently being investigated in detail by the authors, at present it must 
be assumed that in the small-signal approximation a useful sine-wave 
response function exists and can be measured. The small-signal 
assumption imposes the use of low-contrast targets for this measure
ment. This requirement must be complied with when attempting a 
description of a complete system by this method. 

Assuming that linear-system analysis provides a reasonable facsimile 
system description, at least in the small-signal approximation (for low 
contrast scenes this is a valid assumption), it is possible to calculate the 
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figure of merit defined earlier. (Note that measurements and examples 
will be taken from the Ranger series of spacecraft for which this work 
was originally done.) Taking the facsimile system outP"llt to be a positive 
film transparency, the uniform-field transfer function will be assumed to 
relate the output film transmittance linearly to the input brightness. 
Figure 2 shows a typical transfer curve for a Ranger spacecraft camera 
system. 

For the case of a spatially varying input-brightness distribution, 
b(x,y), the resulting output-transmittance distribution, t(x,y), can easily 
be written down from linear analysis as 

t(x,y) = to + a f~oodlc x f~oodky G(k x,ky) B(k x,ky) X 

X exp[i(kxX + kyY)], (1) 

where to is a transfer constant, a is the slope of the uniform-field 
transfer function, (k x,ky) are spatial frequency components . and 
B(k x,ky) is the Fourier transform of b(x,y), i.e., 

B(k x,ky) = (2~)2 f~oodX f~oodY b(x,y) exp[ - i(k xX + kyy)]. 

Also, G(k x,ky) = GswR(k x,ky) X GMOT(k x,kll ) X GTURB(kx,ky) X .. . , 

where G(k x,ky) is the effective spatial filter of the overall system and 
GSWR ' GMOT' GTURB , etc., are the camera system sine-wave response 
function, the image motion spatial filter, the atmospheric turbulence 
spatial filter, and other possible filtering effects. It is this part of the 
formulation which allows the degradation that will appear in the scene 
reproduction to be predicted. 

The results of sine-wave response measurements on a typical Ranger 
spacecraft camera are shown in Fig. 3. Note that the data points have 
been fitted to a Gaussian curve. Clearly the system sine-wave response 
function will be complex for a television process. In fact, it can be 
shown that for a point-scanned raster the real and imaginary parts of the 
sine-wave response function must form a Hilbert transform pair. 
Figure 3 shows only the amplitude response and the associated phase 
shift has been neglected. Attempts to measure the phase response for 
the Ranger spacecraft systems have been unsuccessful since significant 
phase shifts do not occur until the amplitude modulation is lost in the 
system noise. This will be the case for most high-resolution systems and 
no great error is incurred by neglecting the phase shift portion of the 
sine-wave response function. 

It is simple to show that the effects of image motion can be considered 
as a spatial filter. The exact response of the filter depends on the type 
Qf shutter used and on the type of motion involved. For a perfect 
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behind-the-Iens shutter and uniform motion, it can be shown that 

G (kk) = 2 sin k'VST/2 
MOT x' y k'VST' 

where k is the wave vector in the image plane, v is the velocity vector 
in the image plane, and ST is the exposure time. 

Similarly the effects of atmospheric turbulence can be included as a 
spatial filter although it is difficult to calculate this factor accurately. 

1' 2 

0 
1'0 

., o·s 
VI 
c: 
0 
c. 
VI 

~ 
0'6 

Gaussian curve 
/0-=5'36 

., 
> 
;; 
0; 
a:: 0'4 

0'2 

o 5 10 

Frequency on 35-mm film (cycles /mm) 

FIG. 3. Typical sine-wave response amplitude curve for a. Ranger spacecraft camera.. 

It depends on the amount and type of turbulence present and is general
ly approximated by a Gaussian distribution with an appropriate half
width. 

Only the maximum signal portion ofEq. (1), t~ax, is of interest, and 
it can be shown, using the conditions that t(x,y) is a real function and 
the phase shift is small, that 

. t~ax = a f~~kx f~!ky G(kx,ky) Bs(kx,ky), (2) 

where Bs(k x,ky) is the signal component of the Fourier transform of the 
input brightness distribution. 

It is necessary for an observer to view the illuminated output trans
parency contai.ning the signal plus system-noise and decide whether or 
not a signal is present. It is clear that the observer will try to optimize 
the viewing conditions to facilitate his decision. This optimization is 
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conveniently formulated by considering the observer to act as a spatial 
filter. This assumes that the observer acts as a linear operator, which 
hypothesis is difficult to test, except perhaps indirectly through the 
predictions of the theory. Schade2 among others, has investigated the 
sine-wave response of the eye and concluded that it acts as a low-pass 
filter. Although questions have been raised as to the linearity of the eye
response3 it will be assumed here that the linear-system postulate is 
valid for the human observer for the small-signal case under considera
tion. Then if the observer can be considered as a filter whose response 
is H(kx ,ky) where the normalization H(O,O) is arbitrary, the maximum 
signal at the observer's output is, from Eq. (2), 

SOBS = a10 f~oo dk x f~oo dky G(kx,ky) H(kx,ky) Bs(kx,ky), (3) 

where lois the uniform illumination intensity of the output trans
parency. Note that in writing down Eq. (3) it has been assumed that 
the observer's eye is linearly sensitive to brightness. For the human 
observer, since the eye is usefully sensitive over decades of brightness 
range, a more logarithmic dependence is implied. However, the small
signal approximation for low contrast scenes will not produce large 
brightness variations and to a first order approximation a linear 
transfer characteristic in brightness will be assumed to hold. In fact it 
would have been possible to assume that the uniform brightness transfer 
function of the camera and film is linear in film density and thereby 
incorporate the non-linear response of the eye. For small signals these 
are equivalent approaches. 

All that remains to be known in order to. assess the observer's output 
signal-to-noise ratio is the distribution of the system noise. There 
are many sources of noise in a television system, including electronic 
noise, kinescope noise, and recording film noise. For the present 
analysis, only the power spectrum of the resultant transmittance noise 
appearing in the output reproduction of a uniform input scene is im
portant. This spectrum will be assumed wide with respect to the system 
bandwidth so that a "white" noise approximation is valid. It should 
be noted that the amplitude of the white-noise power spectrum depends 
on the mean transmittance of the output film, since neither a very 
transparent nor a very dense film exhibits much noise. It must also 
be pointed out that the effects of scan-line structure have been ignored. 
The scan lines represent a coherent multiplicative noise which appears 
both in the signal and noise expressions. For a densely scanned raster, 
however, the scan-line overlap allows one to ignore this effect. Thus 
if the film transmittance white-noise power spectrum has an amplitude 
No, the r.m.s. noise at the observer's output (after observer filtering) 
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(4) 

Dividing Eq. (3) by (4), gives the signal-to-r.m.s.-noise ratio at the 
observer's output 

a J~oo dk x J~oo dky G(kx,ky) H(kx,ky) Bs(kx,ky) 

vNo [f~oo dk x f~oo dky H2(k x,ky)r/2 (5) 

As discussed earlier, it is assumed that the observer is able to alter the 
conditions of viewing so as to optimize his detection efficiency. This 
procedure can be formulated mathematically by equating this altera
tion with changing the observer filter spectrum so as to maximize the 
perceived signal-to-noise ratio, Eq. (5). The observer can alter his 
spectral response by such simple actions as magnification and defocusing 
or by more subtle interactions of the eye-brain system. Two mathe
matical models for this process will be presented differing in the latitude 
allowed to the observer for changing the spectrum of his filter. 

The first model assumes that there is no restriction on the shape of the 
observer's spectral response. In this case, optimizing Eq. (5) with 
respect to the function H(k X,ky) is equivalent to optimizing the expres
sion 

[f~oodk x J~}ky H2(k x,ky)] 1/2 [J~oodk xJ~oodky G2(k x,ky) B~(k x,ky)] 1/2' 

Applying Schwarz's inequality in a straightforward manner shows that 
the maximum value occurs for 

H(k x,ky) = G(k x,ky) Bs(k x,ky), 

thus giving for the optimized observer signal-to-r.m.s.-noise ratio 

(6) 

The maximum output signal-to-r.m.s.-noise ratio of the observer's 
model is thus calculable from Eq. (6) by finding the integral of the 
squared product of the sine-wave response of the system and the signal 
spectrum of the uniform square on a uniform background as a function 
of the square dimension. Then setting SjNlmax = 3 for threshold 
detectability, the figure of merit equal to the corresponding square size 
can be obtained. 
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This is a somewhat clumsy process to go through for an analysis of the 
complete system. It is useful therefore to investigate the dependence of 
Eq. (6) on the detailed shape of G(k x,ky) for a fixed Bs(k x,ky). It will be 
assumed thatG(O,O) = 1 always. There are two limiting cases of interest. 

(1) The spectrum of G(kx,ky) is much wider than Bs(k x, ky) so that 
over the range that Bs(k x,ky) extends G(k x,ky) R:; G(O,O) = 1, then 

!I R:; A fa [fOO dk x f OO dky B~(k x,k y)] 1/2 • 
rna vNo - 00 - 00 

(2) The spectrum of Bs(k x,ky) is much wider than G(k x,ky) so that 

N
S I R:;. fa Bs(O,O) [fOO dk x f oo dky G2(k x,ky)] 1/2. 

rna vNo -00-00 

Thus the maximum signal-to-r.m.s.-noise ratio is independent of 
G(kx,ky) in case (1). In case (2) equal signal-to-r.m.s.-noise ratios 
result for sine-wave response characteristics having equal integrals of 
G2(k x,ky) in the limits ± 00. This suggests a common width definition for 
all sine-wave response functions such that 

f~oodk x f~!ky G2(k x,ky) = 4a2. (7) 

Then all response characteristics with the same a value yield asympto
tically equal signal-to-r.m.s.-noise ratios for an optimized observer in 
this model. This width definition is equivalent to the N ~ definition 
proposed by Schade4 in analogy to the electrical case. 

Considering only equivalent response functions as defined by Eq. (7) 
irrespective of detailed shape, the figure of merit resulting from Eq. (6) 
can be evaluated in the two asymptotic regions. The signal spectrum 
for a uniform square on a uniform background is 

B (k k) = llb sin kx1/2 sin ky1/2 (8) 
s x' y 2 k k ' 

7r x y 

where llb is the luminance difference between the square and the back
ground and 1 is the length of a side of the square. Thus using the 
detectability criterion, S/NJrnax = 3, the figure of merit, which is equal 
to the corresponding square size 1, is given by: 

(1) the spectrum of G(kx,ky) much wider than Bs(kx,ky), (a1~ 1), 

1 
67raVNo 

a R:; allb ; (9) 

(2) the spectrum of Bs(kx,ky) much wider than G(kx,ky), (a1 ~ 1), 

212 ~ 67r
2
av:N';; (10) 

a "'" allb . 

Note that the problem naturally breaks into dimensionless parameters. 
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Now the transition region (al ~ 1) must be investigated. Clearly the 
results in this region depend upon the detailed response shape but 
fortunately not in a sensitive manner. At this point, to facilitate 
calculations, it will be assumed that G(k x,ky) = G(ky,k x). Assuming 
that G(O,O) = 1, Eq. (6) is used to evaluate SIN/max for a variety of 
response fall-off characteristics. Figure 4 shows five fall-off shapes 
representative of those investigated. These range from an. exponential 
fall-off to a rectangular fall-off. Note that phase shifts have been neglec
ted except for the sin xix case and all ofthe plotted curves have a = 1. 
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FIG. 4. Response curves for typical filter shapes. 

Figure 5 then shows the results of calculating the figure of merit in the 
transition region (al ~ 1) for these shapes. Note that only the boun
daries of the region containing the resulting curves are shown since this is 
the point of interest. The axes represent the parameters resulting from 
the asymptotic analysis. An average curve could be drawn which lies 
within 10% of either boundary. One would like to infer that this is 
quite a general result, i.e., the curve for any reasonable fall-off charac
teristic between the rectangular and exponential functions should lie 
within the boundaries in Fig. 5. 

The above results rely on a model which perhaps allows too much 
latitude to the observer to shape his filter in order to optimize the out
put signal-to-noise ratio. An alternative and more restrictive approach 
would be to assume the observer filter to be of a given shape but 
with variable width. The observer then adjusts this width to optimize 
his output signal-to-noise ratio. 
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The mathematics for this observer model can be fortnulated as 
follows. Equation (5) still gives the basic expression for the observer's 
output signal-to-noise ratio. If UOBS is the width of the observer filter 
H(k z,k ll ) (in the sense of Eq. (7)), Eq. (5) is solved for the figure of merit 
under the optimization conditions 

81 = 3, 
N OBS 

and (11) 

(7 81 
(7 UOBS N OBS = o. 

102 r--------,---------.---------.---------,--~--__. 
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b 
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2 ,,>./Na 
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FIG. 5. Results obtained for the figure of merit assuming an optimized detection system. 

This model is even clumsier than the first, but here again the resulting 
figure of merit might not be sensitive to the detailed filter shapes. 
Under the same filter symmetry assumptions as earlier, one can cal
culate the figure of merit for the filter shapes shown in Fig. 4 under the 
conditions in Eq. (11). Now one filter must be chosen for the system 
response function' and one for the observer. The boundaries of the 
results for the twentyfive cases are shown in Fig. 6. The problem 
produces the same dimensionless quantities appearing along the axes. 
Note there is a somewhat wider dispersion than in Fig. 5 but still an 
average curve can be drawn lying within 15% of the boundaries. 

The dispersion at the asymptotes results from the fact that an 
observer with a given spectral response mayor may not act as an 
optimum observer. In this regard the lower boundary in Fig. 6 is 
identic-al with the lower boundary in Fig. 5. Again one would like to 
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FIG. 6. Figure of merit for an observer acting as a low-pass band filter. 

infer that any reasonable fall-off characteristic lying between the ex
ponential and rectangular functions will give a figure of merit curve 
within these boundaries. 

Figure 7 shows a single curve half-way between the boundaries of 
Fig. 6. This curve agrees with the theory to within 15% and within the 
filter shape range considered. 
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FIG. 7. Average figure of merit. 
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EXPERIME TAL TE TS 

The final question to be considered relates to the accuracy of the 
theory. Clearly many assumptions have gone into the analysis presen
ted, the most important of which allowed the application of linear analy
sis. In general this assumption limits the analysis to a first order theory 
in the small- ignal region. This in turn limit it to low contrast scenes. 
The Moon indeed satisfies this criterion. TllU the pictures obtained by 
the Ranger pace craft cameras provide ate t of the theory. Pictures 

FIG. . Calculated figure of morit for a frame of a camel'a mounted on the Ranger IX 
spacoc.-aft. 

from the three Ranger missions offer a test over a range of about one 
order of magnitude of the variable K = 61T2aVNolal!b. In Fig. 7 the 
data for a Ranger IX B camera frame are shown. The neces ary 
calibration measurements were made before the flight and the scene 
contrast was found from the lunar reflectance function and the viewing 
geometry for an as umed 15° slope (taken from radar mea urements). 
The resulting figuTe of merit is lightly Ie than twice the scan-line 
pacing and i how11 in Fig. . in which the quare at the point of the 
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arrow has sides equal to the figure of merit. It must be remembered 
that the picture in Fig. 8 has gone through several generations of 
reprodu'ction since the original for which the calibration data apply. 
The figure of merit as calculated measures the resolution limits of the 
picture quite well. This can be verified by viewing the same area in a 
later frame at better resolution. 

Using the Ranger frames to verify the theory is very tedious although 
,. useful. A careful test ofthe theory is being undertaken by the authors 

using laboratory arrangements in which the variables can be well 
controlled. These measurements include testing the limits of applica
bility oflinear-system analysis. No final results are yet available as only 
preliminary measurements have been made. 

CONCLUSIONS 

A first order theory has been presented which allows, by means of 
a single curve (Fig. 7) and standard calibration data, the prediction of 
the resolution capabilities of a complex system. Within this formula-

' tion the effects of image motion, atmospheric turbulence, scene contrast, 
system sine-wave response, system noise, and the limitations in response 
of the observer, are accounted for in a unified manner, all these para
meters being considered as effective spatial filters. Clearly if it were 
possible to measure in sufficient detail the resolution capabilities of 
the system under consideration in its intended operational environment, 
there would be no need for the present analysis. However, if this is 
impossible as in the case of spacecraft missions, the present formulation 
would prove very useful. 

REFERENCES 

1. Schade, O. H .• "An Evaluation of Photographic Image Quality" . ROA 
. Electron Tube Division, EM-7752. December 14. 1962. 

2. Schade. O. H .• ROA Rev. 9. 5 (1948). 
3. Bryngdahl. O. Optica Acta 12. 1 (1965). 
4. Schade. O. H., J. Soc. Motion Picture Televis. Engrs 58. 181 (1952). 

a 
b(x.y) 
B(kz.ky) 
Bs(kz.k,;) 
G(kz.ky) 
GswR(kz.ky} 
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H(kz.k ll ) 

10 
P.E.I.D. 

NOMENCLATURE 

Uniform field transfer function slope 
Input scene brightness distribution 
Fourier transform of b(x.y) 
Signal portion of B(kz.ky) 
Composite system sine-wave response function 
Facsimile system sine·wave response function 
Effective image motion spatial filter 
Effective atmospheric turbulence spatial filter 
Effective observer spatial filter 
Output · transparency illumination intensity 
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Spati!l-l frequency components 
Wave vector with components kx and kll 
Uniform target square dimension 
Amplitude of white transmittance noise power spectrum 
Root-mean-square noise amplitude at observer's output 
Equivalent band-pass as defined by Schade4 

Signal at observer's output due to ts"x 

Signal-to-r.m.s.-noise ratio at observer's output 
Optimized signal-to-r.m.s.-noise ratio at observer's output 
Output film transmittance distribution 
Base film transmittance 
Spatially maximized transmittance signal at output film 
Image motion velocity vectOl' at output film 
Coordinates in output film transparency 
Exposure time 
Brightness difference between uniform square and background 
in an input scene 
A variable equal to 67r2 0'VNolat:::..b 
Response function width parameter, in the sense defined by 
Eq. (7) 
Width parameter for the effective observer filter in the same 
sense as 0' 


